A new approach to modelling soil structure dynamics and a preliminary application to structure recovery by earthworm bioturbation after heavy compaction

Author(s):  
Katharina Meurer ◽  
Thomas Keller ◽  
Nick Jarvis

<p>The pore structure of soil is known to be dynamics at time scales ranging from seconds (e.g. compaction) to seasons (e.g. root growth, macro-faunal activity) and even decades to centuries (e.g. changes in organic matter content). Nevertheless, soil physical and hydraulic functions are generally treated as static properties in most soil-crop models. Some models account for seasonal variations in soil properties (e.g. bulk density) due to tillage loosening and post-tillage consolidation or soil sealing, but none can account for longer-term changes in soil structure due to biological agents and processes. Here, we present a new concept for modelling soil structure evolution impacted by biological processes such as root growth and earthworm activity. In this preliminary test of the model, we compare simulations against field observations made at the Soil Structure Observatory (SSO) in Zürich, Switzerland, that was designed to provide information on soil structure recovery following a severe compaction event. In this simple application, we modelled changes in the pore size distribution in a bare soil treatment resulting from soil ingestion and egestion by earthworms and the loosening of compacted soil by casting at the soil surface. Following calibration, the model was able to reproduce the observed temporal development of total porosity, soil bulk density and pore size distribution during a four-year period following severe traffic compaction. The modelling approach presented here appears promising and could help support the development of cost-efficient strategies for sustainable soil management and the restoration of degraded soils.</p>

2021 ◽  
Author(s):  
Katharina Meurer ◽  
Thomas Keller ◽  
Nicholas Jarvis

<p>The pore structure of soil is known to be dynamic at time scales ranging from seconds (e.g. compaction) to seasons (e.g. root growth, macro-faunal activity) and even decades to centuries (e.g. changes in organic matter content). Nevertheless, soil physical and hydraulic functions are generally treated as static properties in most soil-crop models. Some models account for seasonal variations in soil properties (e.g. bulk density) due to tillage loosening and post-tillage consolidation or soil sealing. However, no model can account for longer-term changes in soil structure due to biological agents and processes. The development of such a model remains a challenge due to the enormous complexity of the interactions in the soil-plant system. Here, we present a new concept for modelling soil structure evolution impacted by biological processes such as root growth and earthworm activity. In this preliminary test of the model, we compare simulations against field observations made at the Soil Structure Observatory (SSO) in Zürich, Switzerland, that was designed to provide information on soil structure recovery following a severe compaction event. In this simple application, we modelled changes in the pore size distribution in a bare soil treatment resulting from soil ingestion and egestion by earthworms and the loosening of compacted soil by casting at the soil surface. Following calibration, the model was able to reproduce the observed temporal development of total porosity, soil bulk density and pore size distribution during a four-year period following severe traffic compaction. The modelling approach presented here appears promising and could help support the development of cost-efficient strategies for sustainable soil management and the restoration of degraded soils.</p>


1975 ◽  
Vol 8 (1_suppl) ◽  
pp. 227-232 ◽  
Author(s):  
R Scott Russell ◽  
R Q Cannell ◽  
M J Goss

Direct drilling affects the pore size distribution in the soil, the distribution of organic debris on and within the soil, and the soil structure. These changes in turn affect the development of the root system of the crop, with consequential changes on its nutrient supply and early growth.


2013 ◽  
Vol 27 (4) ◽  
pp. 439-444 ◽  
Author(s):  
J. Melke ◽  
B. Witkowska-Walczak ◽  
P. Bartmiński

Abstract The water retention characteristics of the arctic zone soils ((TurbicCryosol (Skeletic), TurbicCryosols (Siltic, Skeletic) and BrunicTurbicCryosol (Arenic)) derived in different micro-relief forms were determined. Water retention curves were similar in their course for the mud boils, cell forms, and sorted circles ie for TurbicCryosols. For these forms, the mud boils showed the highest water retention ability, whereas the sorted circles - the lowest one. Water retention curves for the tundra polygons (Brunic TurbicCryosol, Arenic) were substantially different from these mentioned above. The tundra polygons were characterized by the lowest bulk density of 1.26 g cm-3, whereas the sorted circles (TurbicCryosol, Skeletic) - the highest: 1.88 g cm-3. Total porosity was the highest for the tundra polygons (52.4 and 55.5%) and the lowest - for the sorted circles (28.8 and 26.2%). Pore size distribution of the investigated soils showed that independently of depths, the highest content of large and medium pores was noticed for the tundra polygons ie 21.2-24.2 and 19.9-18.7%, respectively. The lowest content of large pores was observed for the cell forms (6.4-5.9%) whereas the mud boils exhibited the lowest amount of medium sized pores (12.2-10.4%) (both TurbicCryosols Siltic, Skeletic). The highest content of small pores was detected in the mud boils - 20.4 and 19.0%.


1990 ◽  
Vol 180 ◽  
Author(s):  
Douglas M. Smith ◽  
Pamela J. Davis ◽  
C. Jeffrey Brinker

ABSTRACTThe use of NMR relaxation measurements for the in-situ study of pore structure evolution during gel aging and drying is illustrated. The change in the pore size distribution and surface area of both wet and dried gels is examined as a function of aging conditions including temporal aging, thermal aging, changing pH, and changing pore fluid. The effect of pore fluid pH on dissolution/reprecipitation in ordered packings of monodisperse silica spheres is also examined as a model system for particulate gels. As expected, the pore size distribution narrows with increasing time of treatment in high pH pore fluids. Interpretation of high pH results for the wet state is complicated by a microporous layer which forms on colloidal silica resulting in significantly larger wet surface area as compared to the final dried material. Narrowing of the pore size distribution, which is of interest for maximizing drying rates, is maximized in the least time by using either high pH or repeated ethanol washes for the base-catalyzed gel (B2) used.


Biologia ◽  
2015 ◽  
Vol 70 (11) ◽  
Author(s):  
Kálmán Rajkai ◽  
Brigitta Tóth ◽  
Gyöngyi Barna ◽  
Hilda Hernádi ◽  
Mihály Kocsis ◽  
...  

AbstractWater storage and flow in soils are highly dependent on soil structure, which strongly determines soil porosity. However pore size distribution can be derived from soil water retention curve (SWRC). Structural characteristics of cultivated arable fields (693 soil profiles, 1773 samples) and soils covered by treated forest stands (137 soil profiles, 405 samples) were selected from the MARTHA Hungarian soil physical database, and evaluated for expressing organic matter effects on soil structure and water retention. For this purpose the normalized pore size distribution curves were determined for the selected soils, plus the modal suction (MS) corresponding to the most frequent pore size class of the soil. Skewness of soils’ pore size distribution curves are found different. The quasi-normal distribution of sandy soils are transformed into distorted in clayey soils. A general growing trend of MS with the ever finer soil texture was shown. Sandy soils have the lowest average MS values, i.e. the highest most frequent equivalent pore diameter. Silty clay and clay soil textures are characterized by the highest MS values. A slight effect of land use and organic matter content is also observable in different MS values of soils under forest vegetation (’forest’) and cultivated arable land (‘plough fields’). MS values of the two land uses were compared statistically. The results of the analyses show that certain soil group’s MS are significantly different under forest vegetation and cultivation. However this difference can be explained only partly and indirectly by the organic matter of different plant coverage in the land use types.


2008 ◽  
Vol 3 (Special Issue No. 1) ◽  
pp. S7-S20 ◽  
Author(s):  
M. Kutílek ◽  
L. Jendele

Products of biological processes are the dominant factor of soil structure formation in A horizons, while in B horizons their role is less expressed. Soil structure influences dominantly the structural domain of the pore system in bimodal soils thus affecting soil hydraulic functions. The form of soil hydraulic functions depends upon the pore size distribution and generally upon configuration of the soil pore system. We used the functions derived for the lognormal pore size distribution and modified them to bi-modal soils. The derived equations were tested by experimental data of catalogued soils. The procedure leads to the separation of two mutually different domains of structural and matrix pores. The value of the pressure head (potential) separating the two domains is not constant and varies in a broad range. For each domain we obtained its water retention function and unsaturated hydraulic conductivity function. The separation of hydraulic functions for the two domains is a key problem in the solution of preferential flow and in controlling lateral flow between the structural and matrix domains. Water retention function is fully physically based while the conductivity function still keeps fitting parameters, too. Their simple relationship to tortuosity and pores connectivity was not confirmed. Since they differ substantially for matrix and structural domains, we suppose that there exists a great difference in configuration of porous systems in structural and matrix domains. The use of uniform fitting conductivity parameters for the whole range of pores is not justifiable.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Leandro Campos Pinto ◽  
Wantuir Filipe Teixeira Chagas ◽  
Francisco Hélcio Canuto Amaral

The relationship of management and soil quality may be evaluated by the behavior of soil physical, chemical and biological properties. In the assessment of soil structure, it is sought attributes in the view of measuring the porosity and the distribution of pores by size and its implication to permeability and rigidity of the pores, as well as the stability of the units that composes soil structure. The aim of this research was to assess the structure of a Dystroferric Red Latosol (Oxisol) under conventional corn crop, conventional coffee crop, eucalyptus crop and an equilibrium reference (native vegetation), by the determination of the particle density, bulk density, calculated total porosity, microporosity, macroporosity, moisture saturation, determined total porosity, blocked pores and aggregated stability. Soil under native vegetation presented the lowest values of particle density, probably due to the greatest soil organic matter content in this environment. It was verified a tendency of increasing blocked pores and decreasing bulk density. As expected, bulk density varied from 0.87 to 1.03 g cm-3, showing an inversely proportional distribution related to total porosity. The largest values of geometric mean diameter presented by the soil under native vegetation are due to thegreater structuration degree of this soil, which contributes to the stabilization of the aggregates in this environment. The native vegetation environment presented a better soil physical quality in relation to other land uses.


2014 ◽  
Vol 153 (2) ◽  
pp. 270-281 ◽  
Author(s):  
X. W. CHEN ◽  
X. H. SHI ◽  
A. Z. LIANG ◽  
X. P. ZHANG ◽  
S. X. JIA ◽  
...  

SUMMARYThe present work built on a previous study of tillage trials, which found the effectiveness of least limiting water range (LLWR) as an indicator of soil organic carbon (SOC) mineralization under different tillage practices in a black soil of Northeast China in 2009. To improve the understanding of soil structure controls over SOC dynamics, a study was conducted to explore the relationship between LLWR, which was calculated based on soil bulk density and soil pore-size distribution, and the effects of LLWR, which was calculated based on soil bulk density and soil pore-size distribution on SOC mineralization following no tillage (NT) and mouldboard ploughing (MP). In contrast to MP, NT had a significantly greater volume of large macropores (>100 μm) at depths of 0–0·05 and 0·2–0·3 m, but a significantly lower volume of small macropores (30–100 μm) at depths of 0–0·05, 0·05–0·1, 0·1–0·2 and 0·2–0·3 m. The volume of meso- (0·2–30 μm) and micro-pores (<0·2 μm) at different depths under the two tillage practices were similar. Tillage-induced changes in soil bulk density and pore-size volumes affected the ability of soil to fulfil essential soil functions in relation to organic matter turnover. Soil pore-size distribution, especially small macropores greatly affected LLWR and there was a significant correlation between LLWR, which was calculated based on soil bulk density, and the proportion of small macropores. The proportion of small macropores were used to calculate LLWR instead of soil bulk density and the values for NT and MP soils ranged from 0·073 to 0·148 m3water/m3soil. Using the proportion of small macropores rather than bulk density in the calculation of LLWR resulted in more sensitive indications of SOC mineralization. Variation in the proportion of small macropores can help characterize the impacts of tillage practices on dynamics of LLWR and SOC sequestration.


Sign in / Sign up

Export Citation Format

Share Document