Dynamics and energetics of nonlinear internal wave around a double-canyon system

Author(s):  
Qun Li

<p>The continental shelf/slope northeastern Taiwan is a ‘hotspot’ of nonlinear internal wave (NLIW). The complex spatial pattern of NLIW indicates the complexity of the source and the background conditions. In this talk, we investigated the dynamic and energetics of the internal tide (IT) and NLIW around this region based on a 3D high resolution nonhydrostatic numerical model. Special attention is paid on the role of two main topographic features-the Mien-Hua Canyon and the North Mien-Hua Canyon, which are the energetic sources for ITs and NLIW.</p><p>The complex IT field is excited by the double-Canyon system and the rotary tidal current. ITs from different sources and formation time interference with each other further strengthen the complexity. The area-integrated energy flux divergence (the area-integrated dissipation rate) is ~0.45GW (~0.28GW) and ~0.26 GW (~0.17 GW) over the Mien-Hua Canyon and the North Mien-Hua Canyon, respectively. Along with the energetic internal tides, large-amplitude NLIW and trains are also generated over the continental shelf and slope region. The amplitude of the NLIW can reach to about 30 m on the continental slope with a water depth of 130 m and shows similar spatial complexity, which is consistent with in situ and satellite observations. Further analysis shows that the dominant generation mechanism of the NLIW belongs to the mixed tidal-lee wave regime. In addition, the dynamic processes can be significantly modulated by the Kuroshio. With the present of Kuroshio, the energy flux of the M2 internal tide shows a distinct gyre pattern and strengthens over the double canyon system, which is more close to the mooring observations and previous study.</p>

2017 ◽  
Vol 47 (2) ◽  
pp. 303-322 ◽  
Author(s):  
Amy F. Waterhouse ◽  
Jennifer A. Mackinnon ◽  
Ruth C. Musgrave ◽  
Samuel M. Kelly ◽  
Andy Pickering ◽  
...  

AbstractObservations from Eel Canyon, located on the north coast of California, show that elevated turbulence in the full water column arises from the convergence of remotely generated internal wave energy. The incoming semidiurnal and bottom-trapped diurnal internal tides generate complex interference patterns. The semidiurnal internal tide sets up a partly standing wave within the canyon due to reflection at the canyon head, dissipating all of its energy within the canyon. Dissipation in the near bottom is associated with the diurnal trapped tide, while midwater isopycnal shear and strain is associated with the semidiurnal tide. Dissipation is elevated up to 600 m off the bottom, in contrast to observations over the flat continental shelf where dissipation occurs closer to the topography. Slope canyons are sinks for internal wave energy and may have important influences on the global distribution of tidally driven mixing.


2017 ◽  
Vol 47 (6) ◽  
pp. 1325-1345 ◽  
Author(s):  
Eric Kunze

AbstractInternal-wave-driven dissipation rates ε and diapycnal diffusivities K are inferred globally using a finescale parameterization based on vertical strain applied to ~30 000 hydrographic casts. Global dissipations are 2.0 ± 0.6 TW, consistent with internal wave power sources of 2.1 ± 0.7 TW from tides and wind. Vertically integrated dissipation rates vary by three to four orders of magnitude with elevated values over abrupt topography in the western Indian and Pacific as well as midocean slow spreading ridges, consistent with internal tide sources. But dependence on bottom forcing is much weaker than linear wave generation theory, pointing to horizontal dispersion by internal waves and relatively little local dissipation when forcing is strong. Stratified turbulent bottom boundary layer thickness variability is not consistent with OGCM parameterizations of tidal mixing. Average diffusivities K = (0.3–0.4) × 10−4 m2 s−1 depend only weakly on depth, indicating that ε = KN2/γ scales as N2 such that the bulk of the dissipation is in the pycnocline and less than 0.08-TW dissipation below 2000-m depth. Average diffusivities K approach 10−4 m2 s−1 in the bottom 500 meters above bottom (mab) in height above bottom coordinates with a 2000-m e-folding scale. Average dissipation rates ε are 10−9 W kg−1 within 500 mab then diminish to background deep values of 0.15 × 10−9 W kg−1 by 1000 mab. No incontrovertible support is found for high dissipation rates in Antarctic Circumpolar Currents or parametric subharmonic instability being a significant pathway to elevated dissipation rates for semidiurnal or diurnal internal tides equatorward of 28° and 14° latitudes, respectively, although elevated K is found about 30° latitude in the North and South Pacific.


2007 ◽  
Vol 37 (7) ◽  
pp. 1829-1848 ◽  
Author(s):  
Matthew H. Alford ◽  
Zhongxiang Zhao

Abstract Extending an earlier attempt to understand long-range propagation of the global internal-wave field, the energy E and horizontal energy flux F are computed for the two gravest baroclinic modes at 80 historical moorings around the globe. With bandpass filtering, the calculation is performed for the semidiurnal band (emphasizing M2 internal tides, generated by flow over sloping topography) and for the near-inertial band (emphasizing wind-generated waves near the Coriolis frequency). The time dependence of semidiurnal E and F is first examined at six locations north of the Hawaiian Ridge; E and F typically rise and fall together and can vary by over an order of magnitude at each site. This variability typically has a strong spring–neap component, in addition to longer time scales. The observed spring tides at sites northwest of the Hawaiian Ridge are coherent with barotropic forcing at the ridge, but lagged by times consistent with travel at the theoretical mode-1 group speed from the ridge. Phase computed from 14-day windows varies by approximately ±45° on monthly time scales, implying refraction by mesoscale currents and stratification. This refraction also causes the bulk of internal-tide energy flux to be undetectable by altimetry and other long-term harmonic-analysis techniques. As found previously, the mean flux in both frequency bands is O(1 kW m−1), sufficient to radiate a substantial fraction of energy far from each source. Tidal flux is generally away from regions of strong topography. Near-inertial flux is overwhelmingly equatorward, as required for waves generated at the inertial frequency on a β plane, and is winter-enhanced, consistent with storm generation. In a companion paper, the group velocity, ĉg ≡ FE−1, is examined for both frequency bands.


2013 ◽  
Vol 43 (2) ◽  
pp. 248-258 ◽  
Author(s):  
Rob A. Hall ◽  
John M. Huthnance ◽  
Richard G. Williams

Abstract Reflection of internal waves from sloping topography is simple to predict for uniform stratification and linear slope gradients. However, depth-varying stratification presents the complication that regions of the slope may be subcritical and other regions supercritical. Here, a numerical model is used to simulate a mode-1, M2 internal tide approaching a shelf slope with both uniform and depth-varying stratifications. The fractions of incident internal wave energy reflected back offshore and transmitted onto the shelf are diagnosed by calculating the energy flux at the base of slope (with and without topography) and at the shelf break. For the stratifications/topographies considered in this study, the fraction of energy reflected for a given slope criticality is similar for both uniform and depth-varying stratifications. This suggests the fraction reflected is dependent only on maximum slope criticality and independent of the depth of the pycnocline. The majority of the reflected energy flux is in mode 1, with only minor contributions from higher modes due to topographic scattering. The fraction of energy transmitted is dependent on the depth-structure of the stratification and cannot be predicted from maximum slope criticality. If near-surface stratification is weak, transmitted internal waves may not reach the shelf break because of decreased horizontal wavelength and group velocity.


Author(s):  
Johannes Becherer ◽  
James N. Moum ◽  
Joseph Calantoni ◽  
John A. Colosi ◽  
John A. Barth ◽  
...  

AbstractHere, we develop a framework for understanding the observations presented in the accompanying paper (Part I) by Becherer et al. (2021). In this framework, the internal tide saturates as it shoals due to amplitude limitation with decreasing water depth (H). From this framework evolves estimates of averaged energetics of the internal tide; specifically, energy, 〈APE〉, energy flux, 〈FE〉, and energy flux divergence, ∂x 〈FE〉. Since we observe that 〈D〉 ≈ ∂x 〈FE〉, we also interpret our estimate of ∂x 〈FE〉 as 〈D〉. These estimates represent a parameterization of the energy in the internal tide as it saturates over the inner continental shelf. The parameterization depends solely on depth-mean stratification and bathymetry. A summary result is that the cross-shelf depth dependencies of 〈APE〉, 〈FE〉 and ∂x 〈FE〉 are analogous to those for shoaling surface gravity waves in the surf zone, suggesting that the inner shelf is the surf zone for the internal tide. A test of our simple parameterization against a range of data sets suggests that it is broadly applicable.


2013 ◽  
Vol 43 (8) ◽  
pp. 1780-1797 ◽  
Author(s):  
Samuel M. Kelly ◽  
Nicole L. Jones ◽  
Jonathan D. Nash

Abstract Tide–topography interactions dominate the transfer of tidal energy from large to small scales. At present, it is poorly understood how low-mode internal tides reflect and scatter along the continental margins. Here, the coupling equations for linear tides model (CELT) are derived to determine the independent modal solutions to Laplace's Tidal Equations (LTE) over stepwise topography in one horizontal dimension. CELT is (i) applicable to arbitrary one-dimensional topography and realistic stratification without requiring numerically expensive simulations and (ii) formulated to quantify scattering because it implicitly separates incident and reflected waves. Energy fluxes and horizontal velocities obtained using CELT are shown to converge to analytical solutions, indicating that “flat bottom” modes, which evolve according to LTE, are also relevant in describing tides over sloping topography. The theoretical framework presented can then be used to quantify simultaneous incident and reflected energy fluxes in numerical simulations and observations of tidal flows that vary in one horizontal dimension. Thus, CELT can be used to diagnose internal-tide scattering on continental slopes. Here, semidiurnal mode-1 scattering is simulated on the Australian northwest, Brazil, and Oregon continental slopes. Energy-flux divergence and directional energy fluxes computed using CELT are shown to agree with results from a finite-volume model that is significantly more numerically expensive. Last, CELT is used to examine the dynamics of two-way surface–internal-tide coupling. Semidiurnal mode-1 internal tides are found to transmit about 5% of their incident energy flux to the surface tide where they impact the continental slope. It is hypothesized that this feedback may decrease the coherence of sea surface displacement on continental shelves.


2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.


Author(s):  
Callum J. Shakespeare ◽  
Brian K. Arbic ◽  
Andrew McC. Hogg

AbstractInternal waves generated at the seafloor propagate through the interior of the ocean, driving mixing where they break and dissipate. However, existing theories only describe these waves in two limiting cases. In one limit, the presence of an upper boundary permits bottom-generated waves to reflect from the ocean surface back to the seafloor, and all the energy flux is at discrete wavenumbers corresponding to resonant modes. In the other limit, waves are strongly dissipated such that they do not interact with the upper boundary and the energy flux is continuous over wavenumber. Here, a novel linear theory is developed for internal tides and lee waves that spans the parameter space in between these two limits. The linear theory is compared with a set of numerical simulations of internal tide and lee wave generation at realistic abyssal hill topography. The linear theory is able to replicate the spatially-averaged kinetic energy and dissipation of even highly non-linear wave fields in the numerical simulations via an appropriate choice of the linear dissipation operator, which represents turbulent wave breaking processes.


2003 ◽  
Vol 15 (1) ◽  
pp. 41-46 ◽  
Author(s):  
ROBIN ROBERTSON ◽  
AIKE BECKMANN ◽  
HARTMUT HELLMER

In certain regions of the Southern Ocean, tidal energy is believed to foster the mixing of different water masses, which eventually contribute to the formation of deep and bottom waters. The Ross Sea is one of the major ventilation sites of the global ocean abyss and a region of sparse tidal observations. We investigated M2 tidal dynamics in the Ross Sea using a three-dimensional sigma coordinate model, the Regional Ocean Model System (ROMS). Realistic topography and hydrography from existing observational data were used with a single tidal constituent, the semi-diurnal M2. The model fields faithfully reproduced the major features of the tidal circulation and had reasonable agreement with ten existing tidal elevation observations and forty-two existing tidal current measurements. The differences were attributed primarily to topographic errors. Internal tides were generated at the continental shelf/slope break and other areas of steep topography. Strong vertical shears in the horizontal velocities occurred under and at the edges of the Ross Ice Shelf and along the continental shelf/slope break. Estimates of lead formation based on divergence of baroclinic velocities were significantly higher than those based on barotrophic velocities, reaching over 10% at the continental shelf/slope break.


2010 ◽  
Vol 17 (4) ◽  
pp. 345-360 ◽  
Author(s):  
E. L. Shroyer ◽  
J. N. Moum ◽  
J. D. Nash

Abstract. The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm−1, and the wave dissipative loss was near 50 W m−1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.


Sign in / Sign up

Export Citation Format

Share Document