Comparison of sea ice concentrations from ASI, BT and NT2 algorithms with ERA-Interim dataset in the Arctic and Antarctic regions

Author(s):  
Shuang Liang ◽  
Jiangyuan Zeng ◽  
Zhen Li

<p>Evaluating the performance and consistency of passive microwave (PM) sea ice concentration (SIC) products derived from different algorithms is critical since a good knowledge of the quality of the satellite SIC products is essential for their application and improvement. To comprehensively evaluate the performance of satellite SIC in long time series and the whole polar regions (both Arctic and Antarctic), in the study we examined the spatial and temporal distribution of the discrepancy between four PM satellite SIC products with the ERA-Interim sea ice fraction dataset (ERA SIC) during the period of 2015-2018. The four PM SIC products include the DMSP SSMIS with Arctic Radiation and Turbulence Interaction Study Sea Ice (ASI) algorithm (SSMIS/ASI), the GCOM-W AMSR2 with NASA Bootstrap (BT) algorithm (AMSR2/BT), the Chinese Feng Yun-3B with enhanced NASA Team (NT2) sea ice algorithm (FY3B/NT2), and the Chinese Feng Yun-3C with NT2 (FY3C/NT2) at a spatial resolution of 12.5 km.</p><p>The results show the spatial patterns of PM SIC products are generally in good agreement with ERA SIC. The comparison of monthly and annual SIC shows that the largest bias and root mean square difference (RMSD) for the PM SIC products mainly occur in summer and the marginal ice zone, indicating that there are still many uncertainties in PM SIC products in such period and region. Meanwhile, the daily sea ice extent (SIE) and sea ice area (SIA) derived from the four PM SIC products can generally well reflect the variation trend of SIE and SIA in Arctic and Antarctic. The largest bias of SIE and SIA are above 4×10<sup>6</sup> km<sup>2</sup> when the sea ice reaches the maximum and minimum value, and the daily bias of SIE and SIA vary seasonally and regionally, which is mainly concentrated from June to October in Arctic. In general, among the four PM SIC products, the SSMIS/ASI product performs the best compared with ERA SIC though it usually underestimates SIC with a negative bias. The FY3B/NT2 and FY3C/NT2 products show more significant discrepancy with higher RMSD and bias in Arctic and Antarctic compared with the SSMIS/ASI and AMSR2/BT. The AMSR2/BT product performs much better in Antarctic than in Arctic and it always overestimates ERA SIC with a positive bias. The consistency of the four PM products concerning ERA SIC in the Antarctic region is generally superior to that in Arctic region.</p>

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 609-616
Author(s):  
AMITA PRABHU ◽  
P.N. MAHAJAN ◽  
R.M. KHALADKAR

The development in the satellite microwave technology during the past three decades has offered an opportunity to the scientific community to access the sea ice data over the polar regions, which was otherwise inaccessible for continuous monitoring by any other means. The present study focuses on the trends in the Sea Ice Extent (SIE) over different sectors of the Arctic and the Antarctic regions and the interannual variability in their extremes. In general, the data over the period (1979-2007) reveal marked interannual variability in the sea ice cover with an increasing and the decreasing trend over the Antarctic and the Arctic region respectively. Over the southern hemisphere, only the Bellingshausen and Amundsen Seas sector shows an exceptional decreasing trend. However, in the northern hemisphere, all the sectors show a decreasing trend, with the Kara and Barents Seas sector being the most prominent one. Although, the decreasing trend of the SIE over the Arctic could be attributed to the global warming, an intriguing question still remains as to why the other polar region shows a different behaviour.


2020 ◽  
Vol 12 (18) ◽  
pp. 2880
Author(s):  
Shuang Liang ◽  
Jiangyuan Zeng ◽  
Zhen Li ◽  
Dejing Qiao ◽  
Ping Zhang ◽  
...  

Sea ice concentration (SIC) plays a significant role in climate change research and ship’s navigation in polar regions. Satellite-based SIC products have become increasingly abundant in recent years; however, the uncertainty of these products still exists and needs to be further investigated. To comprehensively evaluate the consistency of the SIC derived from different SIC algorithms in long time series and the whole polar regions, we compared four passive microwave (PM) satellite SIC products with the ERA-Interim sea ice fraction dataset during the period of 2015–2018. The PM SIC products include the SSMIS/ASI, AMSR2/BT, the Chinese FY3B/NT2, and FY3C/NT2. The results show that the remotely sensed SIC products derived from different SIC algorithms are generally in good consistency. The spatial and temporal distribution of discrepancy among satellite SIC products for both Arctic and Antarctic regions are also observed. The most noticeable difference for all the four SIC products mostly occurs in summer and at the marginal ice zone, indicating that large uncertainties exist in satellite SIC products in such period and areas. The SSMIS/ASI and AMSR2/BT show relatively better consistency with ERA-Interim in the Arctic and Antarctic, respectively, but they exhibit opposite bias (dry/wet) relative to the ERA-Interim data. The sea ice extent (SIE) and sea ice area (SIA) derived from PM and ERA-Interim SIC were also compared. It is found that the difference of PM SIE and SIA varies seasonally, which is in line with that of PM SIC, and the discrepancy between PM and ERA-Interim data is larger in Arctic than in Antarctic. We also noticed that different algorithms have different performances in different regions and periods; therefore, the hybrid of multiple algorithms is a promising way to improve the accuracy of SIC retrievals. It is expected that our findings can contribute to improving the satellite SIC algorithms and thus promote the application of these useful products in global climate change studies.


2021 ◽  
Vol 13 (8) ◽  
pp. 1570
Author(s):  
Sarah B. Hall ◽  
Bulusu Subrahmanyam ◽  
Ebenezer S. Nyadjro ◽  
Annette Samuelsen

Freshwater (FW) flux between the Arctic Ocean and adjacent waterways, predominantly driven by wind and oceanic currents, influences halocline stability and annual sea ice variability which further impacts global circulation and climate. The Arctic recently experienced anomalous years of high and low sea ice extent in the summers of 2013/2014 and 2012/2016, respectively. Here we investigate the interannual variability of oceanic surface FW flux in relation to spatial and temporal variability in sea ice concentration (SIC), sea surface salinity (SSS), and sea surface temperature (SST), focusing on years with summer sea–ice extremes. Our analysis between 2010–2018 illustrate high parameter variability, especially within the Laptev, Kara, and Barents seas, as well as an overall decreasing trend of FW flux through the Fram Strait. We find that in 2012, a maximum average FW flux of 0.32 × 103 ms−1 in October passed over a large portion of the Northeast Atlantic Ocean at 53°N. This study highlights recent changes in the Arctic and Subarctic Seas and the importance of continued monitoring of key variables through remote sensing to understand the dynamics behind these ongoing changes. Observations of FW fluxes through major Arctic routes will be increasingly important as the polar regions become more susceptible to warming, with major impacts on global climate.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 361
Author(s):  
Su-Bong Lee ◽  
Baek-Min Kim ◽  
Jinro Ukita ◽  
Joong-Bae Ahn

Reanalysis data are known to have relatively large uncertainties in the polar region than at lower latitudes. In this study, we used a single sea-ice model (Los Alamos’ CICE5) and three sets of reanalysis data to quantify the sensitivities of simulated Arctic sea ice area and volume to perturbed atmospheric forcings. The simulated sea ice area and thickness thus volume were clearly sensitive to the selection of atmospheric reanalysis data. Among the forcing variables, changes in radiative and sensible/latent heat fluxes caused significant amounts of sensitivities. Differences in sea-ice concentration and thickness were primarily caused by differences in downward shortwave and longwave radiations. 2-m air temperature also has a significant influence on year-to-year variability of the sea ice volume. Differences in precipitation affected the sea ice volume by causing changes in the insulation effect of snow-cover on sea ice. The diversity of sea ice extent and thickness responses due to uncertainties in atmospheric variables highlights the need to carefully evaluate reanalysis data over the Arctic region.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2020 ◽  
Vol 12 (7) ◽  
pp. 1060 ◽  
Author(s):  
Lise Kilic ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Georg Heygster ◽  
Victor Pellet ◽  
...  

Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. The Copernicus Imaging Microwave Radiometer (CIMR) is a high priority candidate mission within the European Copernicus Expansion program, with a special focus on the observation of the polar regions. It will observe at 6.9 and 10.65 GHz with 15 km spatial resolution, and at 18.7 and 36.5 GHz with 5 km spatial resolution. SIC algorithms are based on empirical methods, using the difference in radiometric signatures between the ocean and sea ice. Up to now, the existing algorithms have been limited in the number of channels they use. In this study, we proposed a new SIC algorithm called Ice Concentration REtrieval from the Analysis of Microwaves (IceCREAM). It can accommodate a large range of channels, and it is based on the optimal estimation. Linear relationships between the satellite measurements and the SIC are derived from the Round Robin Data Package of the sea ice Climate Change Initiative. The 6 and 10 GHz channels are very sensitive to the sea ice presence, whereas the 18 and 36 GHz channels have a better spatial resolution. A data fusion method is proposed to combine these two estimations. Therefore, IceCREAM will provide SIC estimates with the good accuracy of the 6+10GHz combination, and the high spatial resolution of the 18+36GHz combination.


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.


2021 ◽  
Author(s):  
Wayne de Jager ◽  
Marcello Vichi

Abstract. Sea-ice extent variability, a measure based on satellite-derived sea ice concentration measurements, has traditionally been used as an essential climate variable to evaluate the impact of climate change on polar regions. However, concentration- based measurements of ice variability do not allow to discriminate the relative contributions made by thermodynamic and dynamic processes, prompting the need to use sea-ice drift products and develop alternative methods to quantify changes in sea ice dynamics that would indicate trends in Antarctic ice characteristics. Here, we present a new method to automate the detection of rotational drift features in Antarctic sea ice at daily timescales using currently available remote sensing ice motion products from EUMETSAT OSI SAF. Results show that there is a large discrepancy in the detection of cyclonic drift features between products, both in terms of intensity and year-to-year distributions, thus diminishing the confidence at which ice drift variability can be further analysed. Product comparisons showed that there was good agreement in detecting anticyclonic drift, and cyclonic drift features were measured to be 1.5–2.2 times more intense than anticyclonic features. The most intense features were detected by the merged product, suggesting that the processing chain used for this product could be injecting additional rotational momentum into the resultant drift vectors. We conclude that it is therefore necessary to better understand why the products lack agreement before further trend analysis of these drift features and their climatic significance can be assessed.


Sign in / Sign up

Export Citation Format

Share Document