The relationship between normalized difference vegetation index (NDVI) and climate factors in the semiarid region: A case study in Yalu Tsangpo River basin of Qinghai-Tibet Plateau

2014 ◽  
Vol 11 (4) ◽  
pp. 926-940 ◽  
Author(s):  
Bing Guo ◽  
Yi Zhou ◽  
Shi-xin Wang ◽  
He-ping Tao
2020 ◽  
Author(s):  
Yongxiu Sun ◽  
Shiliang Liu ◽  
Yuhong Dong ◽  
Shikui Dong ◽  
Fangning Shi

<p>Quantifying drought variations at multi-time scales is important to assess the potential impacts of climate change on terrestrial ecosystems, especially vulnerable desert grassland. Based on the Normalized Difference Vegetation Index (NDVI) and Standardized Precipitation Evapotranspiration Index (SPEI), we assessed the influences of different time-scales drought (SPEI-3, SPEI-6, SPEI-12, SPEI-24, and SPEI-48 with 3, 6, 12, 24 and 48 months, respectively) on vegetation dynamics in the Qaidam River Basin, Qinghai-Tibet Plateau. Results showed that: (1) Temporally, annual and summer NDVI increased, while spring and autumn NDVI decreased from 1998 to 2015. Annual, spring and summer SPEI increased and autumn SPEI decreased. (2) Spatially, annual, spring, summer, and autumn NDVI increased in the periphery of the Basin, with 45.98%, 22.68%, 43.90%  and 30.80% of the study area, respectively. SPEI showed a reverse variation pattern with NDVI, with an obvious decreasing trend from southeast to northwest. (3) Annual vegetation growth in most areas (69.53%, 77.33%, 86.36%, 90.19% and 85.44%) was correlated with drought at all time-scales during 1998-2015. However, high spatial and seasonal differences occurred among different time-scales, with the maximum influence in summer under SPEI24. (4) From month to annual scales, NDVI of all land cover types showed higher correlation to long-term drought of SPEI24 or SPEI48. Vegetation condition index (VCI) and SPEI were positively correlated at all time-scales and had a more obvious response in summer. The highest correlation was VCI of grassland (June-July) or forest (April-May, August-October) and SPEI48. This study contributes to exploring the effect of drought on vegetation dynamics at different time scales, further providing credible guidance for regional water resources management.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 4138
Author(s):  
Xingna Lin ◽  
Jianzhi Niu ◽  
Ronny Berndtsson ◽  
Xinxiao Yu ◽  
Linus Zhang ◽  
...  

Vegetation is an important component of the terrestrial ecosystem that plays an essential role in the exchange of water and energy in climate and biogeochemical cycles. This study investigated the spatiotemporal variation of normalized difference vegetation index (NDVI) in northern China using the GIMMS-MODIS NDVI during 1982–2018. We explored the dominant drivers of NDVI change using regression analyses. Results show that the regional average NDVI for northern China increased at a rate of 0.001 year−1. NDVI improved and degraded area corresponded to 36.1% and 9.7% of the total investigated area, respectively. Climate drivers were responsible for NDVI change in 46.2% of the study area, and the regional average NDVI trend in the region where the dominant drivers were temperature (T), precipitation (P), and the combination of precipitation and temperature (P&T), increased at a rate of 0.0028, 0.0027, and 0.0056 year−1, respectively. We conclude that P has positive dominant effects on NDVI in the subregion VIAiia, VIAiic, VIAiib, VIAib of temperate grassland region, and VIIBiia of temperate desert region in northern China. T has positive dominant effects on NDVI in the alpine vegetation region of Qinghai Tibet Plateau. NDVI is negatively dominated by T in the subregion VIIBiib, VIIBib, VIIAi, and VIIBi of temperate desert regions. Human activities affect NDVI directly by reforestation, especially in Shaanxi, Shanxi, and Hebei provinces.


2022 ◽  
Vol 9 ◽  
Author(s):  
Hongshan Gao ◽  
Fenliang Liu ◽  
Tianqi Yan ◽  
Lin Qin ◽  
Zongmeng Li

The drainage density (Dd) is an important index to show fluvial geomorphology. The study on Dd is helpful to understand the evolution of the whole hydrological and geomorphic process. Based on the Shuttle Radar Topography Mission 90-m digital elevation model, the drainage network of basins along the eastern margin of the Qinghai–Tibet Plateau is extracted using a terrain morphology-based method in ArcGIS 10.3, and Dd is calculated. The spatial characteristics of Dd are analyzed, and the relationship between Dd and its influencing factors, e.g., the topography, precipitation, and vegetation coverage, is explored. Our results show that terrains with a plan curvature ≥3 can represent the channels in the study area. Dd ranges from 2.5 to 0.1 km/km2, increases first, and then decreases from north to south on the eastern margin of the Qinghai–Tibet Plateau. Dd decreases with increasing average slope and average local relief. On the low-relief planation surfaces, Dd increases with increasing altitude, while on the rugged mountainous above planation surfaces, Dd decreases rapidly with increasing altitude. Dd first increased and then decreased with increasing mean annual precipitation (MAP) and normalized difference vegetation index (NDVI), and Dd reaches a maximum in the West Qinling Mountains with a semi-arid environment, indicating that Dd in different climatic regions of the eastern margin of the Qinghai–Tibet Plateau was mainly controlled by precipitation and vegetation.


2021 ◽  
Vol 13 (23) ◽  
pp. 4952
Author(s):  
Xigang Liu ◽  
Yaning Chen ◽  
Zhi Li ◽  
Yupeng Li ◽  
Qifei Zhang ◽  
...  

Phenological change is an emerging hot topic in ecology and climate change research. Existing phenological studies in the Qinghai–Tibet Plateau (QTP) have focused on overall changes, while ignoring the different characteristics of changes in different regions. Here, we use the Global Inventory Modeling and Mapping Studies (GIMMS3g) normalized difference vegetation index (NDVI) dataset as a basis to discuss the temporal and spatial changes in vegetation phenology in the Qinghai–Tibet Plateau from 1982 to 2015. We also analyze the response mechanisms of pre-season climate factor and vegetation phenology and reveal the driving forces of the changes in vegetation phenology. The results show that: (1) the start of the growing season (SOS) and the length of the growing season (LOS) in the QTP fluctuate greatly year by year; (2) in the study area, the change in pre-season precipitation significantly affects the SOS in the northeast (p < 0.05), while, the delay in the end of the growing season (EOS) in the northeast is determined by pre-season air temperature and precipitation; (3) pre-season precipitation in April or May is the main driving force of the SOS of different vegetation, while air temperature and precipitation in the pre-season jointly affect the EOS of different vegetation. The differences in and the diversity of vegetation types together lead to complex changes in vegetation phenology across different regions within the QTP. Therefore, addressing the characteristics and impacts of changes in vegetation phenology across different regions plays an important role in ecological protection in this region.


2021 ◽  
Vol 13 (9) ◽  
pp. 4969
Author(s):  
Jang Hyun Sung ◽  
Donghae Baek ◽  
Young Ryu ◽  
Seung Beom Seo ◽  
Kee-Won Seong

The relationships between a variety of hydro-meteorological variables and irrigation water use rates (WUR) were investigated in this study. Standardized Precipitation Index (SPI), Potential Evapotranspiration (PET), and Normalized Difference Vegetation Index (NDVI) were explored to identify the relationship with the WUR. The Yeongsan river basin, the agricultural land of which is mostly occupied by well-irrigated paddy, was used for the pilot study. Four different temporal scales of SPI-3, 6, 9, and 12 were tested, and PET was calculated using the Thornthwaite method. To calculate NDVI, the surface spectral reflectance data, which was acquired by Moderate Resolution Imaging Spectroradiometer (MODIS) equipped on the Terra satellite, were used. As a result, there was a statistically significant relationship between SPI9 and the WUR during drought periods in which negative values of SPI9 were obtained. The WUR was strongly correlated with both PET and NDVI. Compared with SPI, the variability of WUR in this study area was more sensitively affected by PET and NDVI, which can cause a potential lack of agricultural water supply. The finding of this study implies that SPI9, PET, and NDVI are the critical factors for predicting water withdrawal during drought conditions so that they can be used for irrigational water use management. Although a part of the findings of this study has been discussed by a few previous studies, this study is novel in that it quantifies the relationship between these factors using actual field observations of streamflow withdrawal for irrigation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Chen ◽  
Tiejian Li ◽  
Bellie Sivakumar ◽  
Ashish Sharma ◽  
John D. Albertson ◽  
...  

Climate warming has increased grassland productivity on the Qinghai-Tibet Plateau, while intensified grazing has brought increasing direct negative effects. To understand the effects of climate change and make sustainable management decisions, it is crucial to identify the combined effects. Here, we separate the grazing effects with a climate-driven probability model and elaborate scenario comparison, using the Normalized Difference Vegetation Index (NDVI) of the grassland on the Qinghai-Tibet Plateau. We show that grazing has positive effects on NDVI in the beginning and end of the growing season, and negative effects in the middle. Because of the positive effects, studies tend to underestimate and even ignore the grazing pressure under a warming climate. Moreover, the seasonality of grazing effects changes the NDVI-biomass relationship, influencing the assessment of climate change impacts. Therefore, the seasonality of grazing effects should be an important determinant in the response of grassland to warming in sustainability analysis.


2019 ◽  
Vol 11 (24) ◽  
pp. 7243 ◽  
Author(s):  
Zhifang Pei ◽  
Shibo Fang ◽  
Wunian Yang ◽  
Lei Wang ◽  
Mingyan Wu ◽  
...  

There are currently only two methods (the within-growing season method and the inter-growing season method) used to analyse the normalized difference vegetation index (NDVI)–climate relationship at the monthly time scale. What are the differences between the two methods, and why do they exist? Which method is more suitable for the analysis of the relationship between them? In this study, after obtaining NDVI values (GIMMS NDVI3g) near meteorological stations and meteorological data of Inner Mongolian grasslands from 1982 to 2015, we analysed temporal changes in NDVI and climate factors, and explored the difference in Pearson correlation coefficients (R) between them via the above two analysis methods and analysed the change in R between them at multiple time scales. The research results indicated that: (1) NDVI was affected by temperature and precipitation in the area, showing periodic changes, (2) NDVI had a high value of R with climate factors in the within-growing season, while the significant correlation between them was different in different months in the inter-growing season, (3) with the increase in time series, the value of R between NDVI and climate factors showed a trend of increase in the within-growing season, while the value of R between NDVI and precipitation decreased, but then tended toward stability in the inter-growing season, and (4) when exploring the NDVI–climate relationship, we should first analyse the types of climate in the region to avoid the impacts of rain and heat occurring during the same period, and the inter-growing season method is more suitable for the analysis of the relationship between them.


2021 ◽  
Vol 14 (1) ◽  
pp. 151
Author(s):  
Chunya Wang ◽  
Jinniu Wang ◽  
Niyati Naudiyal ◽  
Ning Wu ◽  
Xia Cui ◽  
...  

Topographic factors are critical for influencing vegetation distribution patterns, and studying the interactions between them can enhance our understanding of future vegetation dynamics. We used the Moderate-resolution Imaging Spectroradiometer Normalized Differential Vegetation Index (MODIS NDVI) image dataset (2000–2019), combined with the Digital Elevation Model (DEM), and vegetation type data for trend analysis, and explored NDVI variation and its relationship with topographic factors through an integrated geographically-weighted model in the Three Parallel Rivers Region (TPRR) of southeastern Qinghai-Tibet Plateau (QTP) in the past 20 years. Our results indicated that there was no significant increase of NDVI in the entire basin between 2000–2019, except for the Lancang River basin. In the year 2004, abrupt changes in NDVI were observed across the entire basin and each sub-basin. During 2000–2019, the mean NDVI value of the whole basin increased initially and then decreased with the increasing elevation. However, it changed marginally with variations in slope and aspect. We observed a distinct spatial heterogeneity in vegetation patterns with elevation, with higher NDVI in the southern regions NDVI than those in the north as a whole. Most of the vegetation cover was concentrated in the slope range of 8~35°, with no significant difference in distribution except flat land. Furthermore, from 2000 to 2019, the vegetation cover in the TPRR showed an improving trend with the changes of various topographic factors, with the largest improvement area (36.10%) in the slightly improved category. The improved region was mainly distributed in the source area of the Jinsha River basin and the southern part of the whole basin. Geographically weighted regression (GWR) analysis showed that elevation was negatively correlated with NDVI trends in most areas, especially in the middle reaches of Nujiang River basin and Jinsha River basin, where the influence of slope and aspect on NDVI change was considerably much smaller than elevation. Our results confirmed the importance of topographic factors on vegetation growth processes and have implications for understanding the sustainable development of mountain ecosystems.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Sign in / Sign up

Export Citation Format

Share Document