Integrating Deep Learning to GIS Modelling: An Efficient Approach to Predict Sediment Discharge at Karstic Springs Under Different Land-Use Scenarios

Author(s):  
Edouard Patault ◽  
Valentin Landemaine ◽  
Jérôme Ledun ◽  
Arnaud Soulignac ◽  
Matthieu Fournier ◽  
...  

<p>Sediment Discharge (SD) at karstic springs refers to a black-box due to the non-linearity of the processes generating SD, and the lack of accurate physical description of karstic environments. Recent research in hydrology emphasized the use of data-driven techniques for black-box models, such as Deep Learning (DL), considering their good predictive power rather than their explanatory abilities. Indeed, their integration into traditional hydrology-related workflows can be particularly promising. In this study, a deep neural network was built and coupled to an erosion-runoff GIS model (<em>WATERSED</em>, Landemaine et al., 2015) to predict SD at a karstic spring. The study site is located in the Radicatel catchment (88 km² in Normandy, France) where spring water is extracted to a Water Treatment Plant (WTP). SD was predicted for several Designed Storm Project (DSP<sub>0.5-2-10-50-100</sub>) under different land-use scenarios by 2050 (baseline, ploughing up 33% of grassland, eco-engineering (181 fascines + 13ha of grass strips), best farming practices (+20% infiltration)). Rainfall time series retrieved from French <em>SAFRAN</em> database and <em>WATERSED</em> modelling outputs extracted at connected sinkholes were used as input data for the DL model. The model structure was found by a classical trial and error procedure, and the model was trained on two significant hydrologic years (n<sub>events</sub> = 731). Evaluation on a test set suggested good performance of the model (NSE = 0.82). Additional evaluation was performed comparing the ‘Generalized Extreme Value’ (GEV) distribution for the five DSP under the baseline scenario. The SD predicted by the DL model was in perfect agreement with the GEV distribution (R² = 0.99). Application of the model on the other scenarios suggests that ploughing up 33% of grasslands will increase SD at the WTP to an average 5%. Eco-engineering and best farming practices will reduce SD in the range of 10-44% and 63-80% respectively. This novel approach offers good opportunities for SD prediction at karstic springs or WTP under multiple land use scenarios. It also provide robust decision making tools for land-use planning and drinking water suppliers.</p>

2021 ◽  
Vol 25 (12) ◽  
pp. 6223-6238
Author(s):  
Edouard Patault ◽  
Valentin Landemaine ◽  
Jérôme Ledun ◽  
Arnaud Soulignac ◽  
Matthieu Fournier ◽  
...  

Abstract. Excessive sediment discharge in karstic regions can be highly disruptive to water treatment plants. It is essential for catchment stakeholders and drinking water suppliers to limit the impact of high sediment loads on potable water supply, but their strategic choices must be based on simulations integrating surface and groundwater transfers and taking into account possible changes in land use. Karstic environments are particularly challenging as they face a lack of accurate physical descriptions for the modelling process, and they can be particularly complex to predict due to the non-linearity of the processes generating sediment discharge. The aim of the study was to assess the sediment discharge variability at a water treatment plant according to multiple realistic land use scenarios. To reach that goal, we developed a new cascade modelling approach with an erosion-runoff geographic information system (GIS) model (WaterSed) and a deep neural network. The model was used in the Radicatel hydrogeological catchment (106 km2 in Normandy, France), where karstic spring water is extracted to a water treatment plant. The sediment discharge was simulated for five design storms under current land use and compared to four land use scenarios (baseline, ploughing up of grassland, eco-engineering, best farming practices, and coupling of eco-engineering/best farming practices). Daily rainfall time series and WaterSed modelling outputs extracted at connected sinkholes (positive dye tracing) were used as input data for the deep neural network model. The model structure was found by a classical trial-and-error procedure, and the model was trained on 2 significant hydrologic years. Evaluation on a test set showed a good performance of the model (NSE = 0.82), and the application of a monthly backward-chaining nested cross-validation revealed that the model is able to generalize on new datasets. Simulations made for the four land use scenarios suggested that ploughing up 33 % of grasslands would increase sediment discharge at the water treatment plant by 5 % on average. By contrast, eco-engineering and best farming practices will significantly reduce sediment discharge at the water treatment plant (respectively in the ranges of 10 %–44 % and 24 %–61 %). The coupling of these two strategies is the most efficient since it affects the hydro-sedimentary production and transfer processes (decreasing sediment discharge from 40 % to 80 %). The cascade modelling approach developed in this study offers interesting opportunities for sediment discharge prediction at karstic springs or water treatment plants under multiple land use scenarios. It also provides robust decision-making tools for land use planning and drinking water suppliers.


2020 ◽  
Author(s):  
Edouard Patault ◽  
Valentin Landemaine ◽  
Jérôme Ledun ◽  
Arnaud Soulignac ◽  
Matthieu Fournier ◽  
...  

Abstract. Excessive sediment discharge at karstic springs and thus, water treatment plants, can be highly disruptive. It is essential for catchment stakeholders and drinking water supplier to reduce the impact of sediment on potable water supply, but their strategic choices must be based on simulations, integrating surface and groundwater transfers, and taking into account possible changes in land use. Karstic environments are particularly challenging as they face a lack of accurate physical description for the modelling process, and they can be seen as a black-box due to the non-linearity of the processes generating sediment discharge. The aim of the study was to assess the sediment discharge variability at a water treatment plant according to multiple realistic land use scenarios. To reach that goal, we developed a new coupled modelling approach with an erosion-runoff GIS model (WaterSed) and a deep neural network. The model was used in the Radicatel catchment (106 km2 in Normandy, France) where karstic spring water is extracted to a water treatment plant. The sediment discharge was simulated for five designed storm projects under current land use and compared to three land use scenarios (baseline, ploughing up of grassland, eco-engineering, best farming practices). Daily rainfall time series and WaterSed modelling outputs extracted at connected sinkholes were used as input data for the deep neural network model. The model structure was found by a classical trial and error procedure, and the model was trained on two significant hydrologic years. Evaluation on a test set showed a good performance of the model (NSE = 0.82), and the application of a monthly-backward chaining nested cross validation revealed that the model is able to generalize on new datasets. Simulations made for the three land use scenarios suggested that ploughing up 33 % of grasslands would not increase significantly sediment discharge at the water treatment plant (5 % in average). In the opposite, eco-engineering and best farming practices will significantly reduce sediment discharge at the water treatment plant (respectively in the range of 10–44 and 24–61 %). The coupling of these two strategies is the most efficient since it affects the hydro-sedimentary production and transfer processes (decreasing sediment discharge from 40 to 80 %). The coupled modelling approach developed in this study offers interesting opportunities for sediment discharge prediction at karstic springs or water treatment plant under multiple land use scenarios. It also provides robust decision-making tools for land use planning and drinking water suppliers.


2021 ◽  
Vol 15 (8) ◽  
pp. 898-911
Author(s):  
Yongqing Zhang ◽  
Jianrong Yan ◽  
Siyu Chen ◽  
Meiqin Gong ◽  
Dongrui Gao ◽  
...  

Rapid advances in biological research over recent years have significantly enriched biological and medical data resources. Deep learning-based techniques have been successfully utilized to process data in this field, and they have exhibited state-of-the-art performances even on high-dimensional, nonstructural, and black-box biological data. The aim of the current study is to provide an overview of the deep learning-based techniques used in biology and medicine and their state-of-the-art applications. In particular, we introduce the fundamentals of deep learning and then review the success of applying such methods to bioinformatics, biomedical imaging, biomedicine, and drug discovery. We also discuss the challenges and limitations of this field, and outline possible directions for further research.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rui Zhu ◽  
Galen Newman

AbstractThere has been mounting interest about how the repurposing of vacant land (VL) through green infrastructure (the most common smart decline strategy) can reduce stormwater runoff and improve runoff quality, especially in legacy cities characterized by excessive industrial land uses and VL amounts. This research examines the long-term impacts of smart decline on both stormwater amounts and pollutants loads through integrating land use prediction models with green infrastructure performance models. Using the City of St. Louis, Missouri, USA as the study area, we simulate 2025 land use change using the Conversion of Land Use and its Effects (CLUE-S) and Markov Chain urban land use prediction models and assess these change’s probable impacts on urban contamination levels under different smart decline scenarios using the Long-Term Hydrologic Impact Assessment (L-THIA) performance model. The four different scenarios are: (1) a baseline scenario, (2) a 10% vacant land re-greening (VLRG) scenario, (3) a 20% VLRG scenario, and (4) a 30% VLRG scenario. The results of this study illustrate that smart decline VLRG strategies can have both direct and indirect impacts on urban stormwater runoff and their inherent contamination levels. Direct impacts on urban contamination include the reduction of stormwater runoff and non-point source (NPS) pollutants. In the 30% VLRG scenario, the annual runoff volume decreases by 11%, both physical, chemical, and bacterial pollutants are reduced by an average of 19%, compared to the baseline scenario. Indirect impacts include reduction of the possibility of illegal dumping on VL through mitigation and prevention of future vacancies.


2021 ◽  
Vol 264 ◽  
pp. 112600
Author(s):  
Robert N. Masolele ◽  
Veronique De Sy ◽  
Martin Herold ◽  
Diego Marcos Gonzalez ◽  
Jan Verbesselt ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3237
Author(s):  
Artem A. Mitrofanov ◽  
Petr I. Matveev ◽  
Kristina V. Yakubova ◽  
Alexandru Korotcov ◽  
Boris Sattarov ◽  
...  

Modern structure–property models are widely used in chemistry; however, in many cases, they are still a kind of a “black box” where there is no clear path from molecule structure to target property. Here we present an example of deep learning usage not only to build a model but also to determine key structural fragments of ligands influencing metal complexation. We have a series of chemically similar lanthanide ions, and we have collected data on complexes’ stability, built models, predicting stability constants and decoded the models to obtain key fragments responsible for complexation efficiency. The results are in good correlation with the experimental ones, as well as modern theories of complexation. It was shown that the main influence on the constants had a mutual location of the binding centers.


Proceedings ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 3
Author(s):  
Luis F. Carmo-Calado ◽  
Roberta Mota-Panizio ◽  
Gonçalo Lourinho ◽  
Octávio Alves ◽  
I. Gato ◽  
...  

The technical-economic analysis was carried out for the production of sludge-derived fuel from a municipal wastewater treatment plant (WWTP). The baseline for the analysis consists of a sludge drying plant, processing 6 m3 of sludge per day and producing a total of about 1 m3 of combustible material with 8% of moisture and a higher calorific power of 18.702 MJ/kg. The transformation of biofuel into energy translates into an electricity production of about 108 kW per 100 kg of sludge. The project in the baseline scenario demonstrated feasibility with a payback time of about six years.


Sign in / Sign up

Export Citation Format

Share Document