Nanoscale chemical imaging of soil organo-mineral associations.

Author(s):  
Floriane Jamoteau ◽  
Nithavong Cam ◽  
Clément Levard ◽  
Thierry Woignier ◽  
Adrien Boulineau ◽  
...  

<p>Organo-mineral associations drive organic matter (OM) stabilization in soils, but mechanisms controlling their dynamics are still not fully known at micro and nanoscale. Adsorption of OM on minerals’ surfaces is a prevalent viewpoint of OM stabilization processes (Kleber et al., 2007), but Basile-Doelsch et al., (2015) suggested that mineral alteration generating amorphous nanophases and cationic oligomers on minerals’ surfaces is also a driver of OM stabilization through coprecipitation processes. Lab experiments which mimic these processes showed that the nanosized co-precipitates (Nanosized Coprecipitates of inorganic oLIgomers with organiCs: nanoCLICs) are made of inorganic Fe, Al, Si oligomers associated with organic molecules (Tamrat et al., 2019). Andosols are known to have a high OM-stabilization capacity, mostly attributed to associations of OM with nanominerals (imogolite, allophane, proto-imogolite) (Basile-Doelsch et al., 2007; Levard et al., 2012). In the present study, we investigated the presence of nanoCLICs in Andosol fractions from La Martinique (French West Indies). We used Transmission Electron Microscopy (TEM, FEI Tecnai Osiris 200kV) coupled with 4 EDX detectors and EELS to semi-quantify and map major elements. TEM analyzed zones of interest ranged from 5 µm to 10 nm with pixel size from 500 to 1 nm. Few crystallized minerals, particulate OM and amorphous thin fibers that could not be definitively attributed to imogolite nanotubes were observed. However, we mainly observed totally amorphous phases to electron diffraction. Al, Si, C, Fe and O were the main component of the latter amorphous phases. Al, Si and Fe were systematically associated to C even at a size resolution down to 1 nm (semi-quantifications ranged from 11 to 41% of C, 4 to 7% of Fe, 34 to 36% of Al and 22 to 46% of Si). Similar high-resolution images were obtained for the andosol organo-mineral associations and the synthetic nanoCLICs. At the working TEM resolution, the nanoCLICs model proposed by Tamrat et al., (2019) is consistent with the structures observed on the andosol. Based on these results, the majority of C appears to be in nanoCLICs form in these Andosol fractions and confirms the hypothesis puts forward by Basile Doelsch et al., (2015).</p><p>Basile Doelsch et al., 2007. Mineral control of carbon pools in a volcanic soil horizon. Geoderma, 137 (3-4), 477-489. ISSN 0016-706.</p><p>Basile-Doelsch et al., 2015. Are Interactions between Organic Compounds and Nanoscale Weathering Minerals the Key Drivers of Carbon Storage in Soils? Environ. Sci. Technol. 49, 3997–3998.</p><p>Kleber et al., 2007. A Conceptual Model of Organo-Mineral Interactions in Soils: Self-Assembly of Organic Molecular Fragments into Zonal Structures on Mineral Surfaces. Biogeochemistry 85, nᵒ 1 (1 août 2007): 9‑24.</p><p>Levard et al., 2012. « Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils ». Geoderma 183‑184 (1 août 2012): 100‑108. </p><p>Tamrat et al., 2019. « Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands ». Geochimica et Cosmochimica Acta, 10 juin 2019. </p>

2012 ◽  
Vol 19 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Zhenlin Wang ◽  
Yuhua Yan ◽  
Tao Wan

AbstractBased on a self-assembly mechanism, a co-precipitation method was utilized to fabricate bone-like biomimetic nanocomposite with a simplified preparation approach and accessible materials to investigate in depth some characteristics of hydroxyapatite/collagen(HAp/Col) nanocomposite for the elucidation of performances in some respects. The as-prepared composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transformation infrared spectroscopy, and thermal analysis. The results show that HAp nanocrystals formed as preferentially oriented slender needles 50–100 nm in length on a felt-like Col matrix which is composed of large numbers of randomly oriented Col fibers and showed polycrystalline behavior. The as-prepared cellular composites are analogous in both composition and nanostructured architecture to native bone, longer aging time promotes the growth and purification of nano-HAp on Col, and characterization confirms that chemical interaction occurs and causes intimate bonding between HAp and Col.


2015 ◽  
Vol 7 (2) ◽  
pp. 1393-1403
Author(s):  
Dr R.P VIJAYALAKSHMI ◽  
N. Manjula ◽  
S. Ramu ◽  
Amaranatha Reddy

Single crystalline nano-sized multiferroic BiFeO3 (BFO) powders were synthesized through simple chemical co-precipitation method using polyethylene glycol (PEG) as capping agent. We obtained pure phase BiFeO3 powder by controlling pHand calcination temperature. From X-ray diffraction studies the nanoparticles were unambiguously identified to have a rhombohedrally distorted perovskite structure belonging to the space group of R3c. No secondary phases were detected. It indicates single phase structure. EDX spectra indicated the appearance of three elements Bi, Fe, O in 1:1:3. From the UV-Vis diffuse reflectance spectrum, the absorption cut-off wavelength of the BFO sample is around 558nm corresponding to the energy band gap of 2.2 eV. The size (60-70 nm) and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM).   Linear M−H behaviour and slight hysteresis at lower magnetic field is observed for BiFeO3 nanoparticles from Vibrating sample magnetometer studies. It indicates weak ferromagnetic behaviour at room temperature. From dielectric studies, the conductivity value is calculated from the relation s = L/RbA Sm-1 and it is around 7.2 x 10-9 S/m.


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


1994 ◽  
Vol 351 ◽  
Author(s):  
Nir Kossovsky ◽  
A. Gelman ◽  
H.J. Hnatyszyn ◽  
E. Sponsler ◽  
G.-M. Chow

ABSTRACTIntrigued by the deceptive simplicity and beauty of macromolecular self-assembly, our laboratory began studying models of self-assembly using solids, glasses, and colloidal substrates. These studies have defined a fundamental new colloidal material for supporting members of a biochemically reactive pair.The technology, a molecular transportation assembly, is based on preformed carbon ceramic nanoparticles and self assembled calcium-phosphate dihydrate particles to which glassy carbohydrates are then applied as a nanometer thick surface coating. This carbohydrate coated core functions as a dehydroprotectant and stabilizes surface immobilized members of a biochemically reactive pair. The final product, therefore, consists of three layers. The core is comprised of the ceramic, the second layer is the dehydroprotectant carbohydrate adhesive, and the surface layer is the biochemically reactive molecule for which delivery is desired.We have characterized many of the physical properties of this system and have evaluated the utility of this delivery technology in vitro and in animal models. Physical characterization has included standard and high resolution transmission electron microscopy, electron and x-ray diffraction and ζ potential analysis. Functional assays of the ability of the system to act as a nanoscale dehydroprotecting delivery vehicle have been performed on viral antigens, hemoglobin, and insulin. By all measures at present, the favorable physical properties and biological behavior of the molecular transportation assembly point to an exciting new interdisciplinary area of technology development in materials science, chemistry and biology.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


2014 ◽  
Vol 67 (5) ◽  
pp. 819
Author(s):  
Syed Mujtaba Shah ◽  
Zafar Iqbal ◽  
Muzaffar Iqbal ◽  
Naila Shahzad ◽  
Amina Hana ◽  
...  

Porphyrin dyes have an inherent tendency to aggregate. This leads to a self-quenching phenomenon that hinders electron transfer to the conduction band of semiconductors in dye-sensitized solar cells. Self-quenching adversely affects the efficiency of solar cells. Here, we report the interaction of porphyrin with pristine and acid-functionalized fullerene molecules on the surface of ZnO nanoparticles under chemisorbed conditions. Chemisorption of porphyrin only on ZnO nanoparticles instigates aggregation of the porphyrin molecules. These aggregates can be effectively broken by chemisorbing fullerene molecules on the surface of the ZnO nanoparticles. This is due to self-assembly formation processes because of porphyrin–fullerene interactions. The nanohybrid material, consisting of ZnO nanorods, acid-functionalized porphyrin, and fullerene derivatives, was characterized by UV–visible spectroscopy, fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The material generates better performing dye-sensitized solar cells when compared with those fabricated from porphyrin-based photo-active material.


Sign in / Sign up

Export Citation Format

Share Document