Dependence of magnetopause reconnection events on interplanetary parameters

Author(s):  
Walter Gonzalez ◽  
Daiki Koga

<p>Magnetic reconnection permits topological rearrangements of the interplanetary and magnetospheric magnetic fields and the entry of solar wind mass, energy, and momentum into the magnetosphere. Thus, magnetic reconnection is a key issue to understand space weather. However, it hasnot been fully understood yet under which interplanetary/magnetosheath conditions magnetic reconnection takes place more effectively at the dayside magnetopause. For this purpose,  in the present study 25 dayside magnetopause reconnection events are investigated using the Time History of Events and Macroscale Interactions during Substorms ( THEMIS ) spacecraft  observations. It was found, (1) that the reconnection electric field is proportional to the interplanetary electric field, (2) that the reconnection electric field is inversely proportional to the solar wind-Alfvén Mach number,  (3) that thereconnection outflow speed is proportional to the solar wind Alfvén speed, and (4) that the reconnection outflow speed is  inversely proportional to the magnetosheath plasma beta. Finally, it is shown that the range of magnetic shear angles for which magnetic reconnection should occur is restricted to large shears as the magnetosheath flow direction becomes more perpendicular to the direction of the local magnetopause normal vector. Since these results refer to fairly typical solar wind-Alfvén Mach number condition, they may not apply to more extreme cases.</p>

2021 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Minna Palmroth ◽  
Andreas Johlander ◽  
Lucile Turc ◽  
Markku Alho ◽  
...  

<p>Dayside magnetic reconnection at the magnetopause, which is a major driver of space weather, is studied for the first time in a three-dimensional (3D) realistic setup using the Vlasiator hybrid-Vlasov kinetic model. A noon–midnight meridional plane simulation is extended in the dawn–dusk direction to cover 7 Earth radii. The southward interplanetary magnetic field causes magnetic reconnection to occur at the subsolar magnetopause. Perturbations arising from kinetic instabilities in the magnetosheath appear to modulate the reconnection. Its characteristics are consistent with multiple, bursty, and patchy magnetopause reconnection. It is shown that the kinetic behavior of the plasma, as simulated by the model, has consequences on the applicability of methods such as the four-field junction to identify and analyse magnetic reconnection in 3D kinetic simulations.</p>


2010 ◽  
Vol 28 (2) ◽  
pp. 515-530 ◽  
Author(s):  
H. Korth ◽  
B. J. Anderson ◽  
C. L. Waters

Abstract. The spatial distributions of large-scale field-aligned Birkeland currents have been derived using magnetic field data obtained from the Iridium constellation of satellites from February 1999 to December 2007. From this database, we selected intervals that had at least 45% overlap in the large-scale currents between successive hours. The consistency in the current distributions is taken to indicate stability of the large-scale magnetosphere–ionosphere system to within the spatial and temporal resolution of the Iridium observations. The resulting data set of about 1500 two-hour intervals (4% of the data) was sorted first by the interplanetary magnetic field (IMF) GSM clock angle (arctan(By/Bz)) since this governs the spatial morphology of the currents. The Birkeland current densities were then corrected for variations in EUV-produced ionospheric conductance by normalizing the current densities to those occurring for 0° dipole tilt. To determine the dependence of the currents on other solar wind variables for a given IMF clock angle, the data were then sorted sequentially by the following parameters: the solar wind electric field in the plane normal to the Earth–Sun line, Eyz; the solar wind ram pressure; and the solar wind Alfvén Mach number. The solar wind electric field is the dominant factor determining the Birkeland current intensities. The currents shift toward noon and expand equatorward with increasing solar wind electric field. The total current increases by 0.8 MA per mV m−1 increase in Eyz for southward IMF, while for northward IMF it is nearly independent of the electric field, increasing by only 0.1 MA per mV m−1 increase in Eyz. The dependence on solar wind pressure is comparatively modest. After correcting for the solar dynamo dependencies in intensity and distribution, the total current intensity increases with solar wind dynamic pressure by 0.4 MA/nPa for southward IMF. Normalizing the Birkeland current densities to both the median solar wind electric field and dynamic pressure effects, we find no significant dependence of the Birkeland currents on solar wind Alfvén Mach number.


2019 ◽  
Vol 124 (11) ◽  
pp. 8778-8787
Author(s):  
D. Koga ◽  
W. D. Gonzalez ◽  
V. M. Souza ◽  
F. R. Cardoso ◽  
C. Wang ◽  
...  

2021 ◽  
Author(s):  
Deepali Deepali ◽  
Supratik Banerjee

<p>We study the variation of average powers and spectral indices of electric field fluctuations with respect to the angle between average flow direction and the mean magnetic field in solar wind turbulence. Cluster spacecraft data from the years 2002 and 2007 are used for the present analysis. We perform a scale dependent study with respect to the local mean magnetic field using wavelet analysis technique. Prominent anisotropies are found for both the spectral index and power levels of the electric power spectra. Similar to the magnetic field fluctuations, the parallel (or antiparallel) electric fluctuation spectrum is found to be steeper than the perpendicular spectrum. However the parallel (or antiparallel) electric power is found to be greater than the perpendicular one. Below 0.1 Hz, the slope of the parallel electric power spectra deviates substantially from that of the total magnetic power spectra, supporting the existence of Alfvénic turbulence.</p>


2008 ◽  
Vol 26 (11) ◽  
pp. 3571-3583
Author(s):  
R. Maggiolo ◽  
J. A. Sauvaud ◽  
I. Dandouras ◽  
E. Luceck ◽  
H. Rème

Abstract. From 15 February 2004, 20:00 UT to 18 February 2004, 01:00 UT, the solar wind density dropped to extremely low values (about 0.35 cm−3). On 17 February, between 17:45 UT and 18:10 UT, the CLUSTER spacecraft cross the dayside magnetopause several times at a large radial distance of about 16 RE. During each of these crossings, the spacecraft detect high speed plasma jets in the dayside magnetopause and boundary layer. These observations are made during a period of southward and dawnward Interplanetary Magnetic Field (IMF). The magnetic shear across the local magnetopause is ~90° and the magnetosheath beta is very low (~0.15). We evidence the presence of a magnetic field of a few nT along the magnetopause normal. We also show that the plasma jets, accelerated up to 600 km/s, satisfy the tangential stress balance. These findings strongly suggest that the accelerated jets are due to magnetic reconnection between interplanetary and terrestrial magnetic field lines northward of the satellites. This is confirmed by the analysis of the ion distribution function that exhibits the presence of D shaped distributions and of a reflected ion population as predicted by theory. A quantitative analysis of the reflected ion population reveals that the reconnection process lasts about 30 min in a reconnection site located at a very large distance of several tens RE from the Cluster spacecraft. We also estimate the magnetopause motion and thickness during this event. This paper gives the first experimental study of magnetic reconnection during such rare periods of very low solar wind density. The results are discussed in the frame of magnetospheric response to extremely low solar wind density conditions.


2016 ◽  
Vol 34 (11) ◽  
pp. 943-959 ◽  
Author(s):  
Yann Pfau-Kempf ◽  
Heli Hietala ◽  
Steve E. Milan ◽  
Liisa Juusola ◽  
Sanni Hoilijoki ◽  
...  

Abstract. We present a scenario resulting in time-dependent behaviour of the bow shock and transient, local ion reflection under unchanging solar wind conditions. Dayside magnetopause reconnection produces flux transfer events driving fast-mode wave fronts in the magnetosheath. These fronts push out the bow shock surface due to their increased downstream pressure. The resulting bow shock deformations lead to a configuration favourable to localized ion reflection and thus the formation of transient, travelling foreshock-like field-aligned ion beams. This is identified in two-dimensional global magnetospheric hybrid-Vlasov simulations of the Earth's magnetosphere performed using the Vlasiator model (http://vlasiator.fmi.fi). We also present observational data showing the occurrence of dayside reconnection and flux transfer events at the same time as Geotail observations of transient foreshock-like field-aligned ion beams. The spacecraft is located well upstream of the foreshock edge and the bow shock, during a steady southward interplanetary magnetic field and in the absence of any solar wind or interplanetary magnetic field perturbations. This indicates the formation of such localized ion foreshocks.


2020 ◽  
Author(s):  
Laura Vuorinen ◽  
Heli Hietala ◽  
Ferdinand Plaschke

<p>Downstream of the Earth's quasi-parallel shock, transients with higher earthward velocities than the surrounding magnetosheath plasma are often observed. These transients have been named magnetosheath jets. Due to their high dynamic pressure, jets can cause multiple types of effects when colliding into the magnetopause. Recently, jets have been linked to triggering magnetopause reconnection in case studies by Hietala et al. (2018) and Nykyri et al. (2019). Jets have been proposed to affect magnetopause reconnection in multiple ways. Jets can compress the magnetopause and make it thin enough for reconnection to occur. Jets could also affect the magnetic shear either by indenting the magnetopause or via the magnetic field of the jets themselves. Here we want to study whether the magnetic field of jets can statistically affect magnetopause reconnection. In particular, we are interested in whether jets could enhance reconnection during more quiet northward IMF conditions.</p><p>We statistically study the magnetic field within jets in the subsolar magnetosheath using measurements from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and OMNI solar wind data from 2008–2011. We investigate jets next to the magnetopause and find that the magnetic field within jets is statistically different compared to the non-jet magnetosheath. Our results suggest that during southward IMF, the non-jet magnetosheath magnetic field itself has more variation than the jets. This suggests that jets should have no statistical, neither enhancing nor suppressing, effect on reconnection during southward IMF. However, during northward IMF, the magnetic field within jets is statistically favorable for enhancing magnetic reconnection at the subsolar magnetopause as around 70 % of these jets exhibit southward fields close to the magnetopause.</p>


2007 ◽  
Vol 25 (1) ◽  
pp. 219-238 ◽  
Author(s):  
J. A. Wild ◽  
S. E. Milan ◽  
J. A. Davies ◽  
M. W. Dunlop ◽  
D. M. Wright ◽  
...  

Abstract. We present space- and ground-based observations of the signatures of magnetic reconnection during an interval of duskward-oriented interplanetary magnetic field on 25 March 2004. In situ field and plasma measurements are drawn from the Double Star and Cluster satellites during traversals of the pre-noon sector dayside magnetopause at low and high latitudes, respectively. These reveal the typical signatures of flux transfer events (FTEs), namely bipolar perturbations in the magnetic field component normal to the local magnetopause, enhancements in the local magnetic field strength and mixing of magnetospheric and magnetosheath plasmas. Further evidence of magnetic reconnection is inferred from the ground-based signatures of pulsed ionospheric flow observed over an extended interval. In order to ascertain the location of the reconnection site responsible for the FTEs, a simple model of open flux tube motion over the surface of the magnetopause is employed. A comparison of the modelled and observed motion of open flux tubes (i.e. FTEs) and plasma flow in the magnetopause boundary layer indicates that the FTEs observed at both low and high latitudes were consistence with the existence of a tilted X-line passing through the sub-solar region, as suggested by the component reconnection paradigm. While a high latitude X-line (as predicted by the anti-parallel description of reconnection) may have been present, we find it unlikely that it could have been responsible for the FTEs observed in the pre-noon sector under the observed IMF conditions. Finally, we note that throughout the interval, the magnetosphere was bathed in ULF oscillations within the solar wind electric field. While no one-to-one correspondence with the pulsed reconnection rate suggested by the ground-based observation of pulsed ionospheric flow has been demonstrated, we note that similar periodicity oscillations were observed throughout the solar wind-magnetosphere-ionosphere system. These findings are consistent with previously proposed mechanisms of solar wind modulation of the dayside reconnection rate.


1998 ◽  
Vol 103 (A8) ◽  
pp. 17307-17322 ◽  
Author(s):  
P. Prikryl ◽  
R. A. Greenwald ◽  
G. J. Sofko ◽  
J. P. Villain ◽  
C. W. S. Ziesolleck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document