Space-time characteristics of areal reduction factors and precipitation mechanisms

Author(s):  
Korbinian Breinl ◽  
Hannes Müller-Thomy ◽  
Günter Blöschl

<p>We link areal reduction factors (ARFs, the ratio of annual maxima catchment precipitation and point precipitation) to the dominating precipitation mechanisms in Austria (84,000km²), using a new efficient method of estimating ARFs based on block kriging. A better understanding of the precipitation mechanisms help assess the plausibility of the ARFs estimated, but ARFs likewise contribute to a better understanding of the precipitation mechanisms as they are a fingerprint of the spatial statistical behavior of extreme precipitation. Our main focus is on two sub-regions in the West and East of Austria, dominated by stratiform and convective precipitation, respectively. ARFs are estimated using rain gauge data with hourly resolution across five durations. ARFs decay faster with increasing area in regions of pronounced convective activity than in regions dominated by stratiform processes. Low ARF values are linked to increased lightening activity (as a proxy for convective activity), but low ARFs can likewise occur in areas of reduced lightning activity as, in summer, convective precipitation can occur everywhere in the country. ARFs tend to decrease with increasing return period, possibly because the contribution of convective precipitation is higher. Our analysis is a key component towards a better understanding of the hydrometeorology in the region, as the process links of the ARFs relate to the space-time scaling of floods.</p>

2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


2013 ◽  
Vol 17 (7) ◽  
pp. 2905-2915 ◽  
Author(s):  
M. Arias-Hidalgo ◽  
B. Bhattacharya ◽  
A. E. Mynett ◽  
A. van Griensven

Abstract. At present, new technologies are becoming available to extend the coverage of conventional meteorological datasets. An example is the TMPA-3B42R dataset (research – v6). The usefulness of this satellite rainfall product has been investigated in the hydrological modeling of the Vinces River catchment (Ecuadorian lowlands). The initial TMPA-3B42R information exhibited some features of the precipitation spatial pattern (e.g., decreasing southwards and westwards). It showed a remarkable bias compared to the ground-based rainfall values. Several time scales (annual, seasonal, monthly, etc.) were considered for bias correction. High correlations between the TMPA-3B42R and the rain gauge data were still found for the monthly resolution, and accordingly a bias correction at that level was performed. Bias correction factors were calculated, and, adopting a simple procedure, they were spatially distributed to enhance the satellite data. By means of rain gauge hyetographs, the bias-corrected monthly TMPA-3B42R data were disaggregated to daily resolution. These synthetic time series were inserted in a hydrological model to complement the available rain gauge data to assess the model performance. The results were quite comparable with those using only the rain gauge data. Although the model outcomes did not improve remarkably, the contribution of this experimental methodology was that, despite a high bias, the satellite rainfall data could still be corrected for use in rainfall-runoff modeling at catchment and daily level. In absence of rain gauge data, the approach may have the potential to provide useful data at scales larger than the present modeling resolution (e.g., monthly/basin).


2007 ◽  
Vol 10 ◽  
pp. 139-144 ◽  
Author(s):  
B. Ahrens ◽  
S. Jaun

Abstract. Spatial interpolation of precipitation data is uncertain. How important is this uncertainty and how can it be considered in evaluation of high-resolution probabilistic precipitation forecasts? These questions are discussed by experimental evaluation of the COSMO consortium's limited-area ensemble prediction system COSMO-LEPS. The applied performance measure is the often used Brier skill score (BSS). The observational references in the evaluation are (a) analyzed rain gauge data by ordinary Kriging and (b) ensembles of interpolated rain gauge data by stochastic simulation. This permits the consideration of either a deterministic reference (the event is observed or not with 100% certainty) or a probabilistic reference that makes allowance for uncertainties in spatial averaging. The evaluation experiments show that the evaluation uncertainties are substantial even for the large area (41 300 km2) of Switzerland with a mean rain gauge distance as good as 7 km: the one- to three-day precipitation forecasts have skill decreasing with forecast lead time but the one- and two-day forecast performances differ not significantly.


2007 ◽  
Vol 8 (6) ◽  
pp. 1204-1224 ◽  
Author(s):  
J. M. Schuurmans ◽  
M. F. P. Bierkens ◽  
E. J. Pebesma ◽  
R. Uijlenhoet

Abstract This study investigates the added value of operational radar with respect to rain gauges in obtaining high-resolution daily rainfall fields as required in distributed hydrological modeling. To this end data from the Netherlands operational national rain gauge network (330 gauges nationwide) is combined with an experimental network (30 gauges within 225 km2). Based on 74 selected rainfall events (March–October 2004) the spatial variability of daily rainfall is investigated at three spatial extents: small (225 km2), medium (10 000 km2), and large (82 875 km2). From this analysis it is shown that semivariograms show no clear dependence on season. Predictions of point rainfall are performed for all three extents using three different geostatistical methods: (i) ordinary kriging (OK; rain gauge data only), (ii) kriging with external drift (KED), and (iii) ordinary collocated cokriging (OCCK), with the latter two using both rain gauge data and range-corrected daily radar composites—a standard operational radar product from the Royal Netherlands Meteorological Institute (KNMI). The focus here is on automatic prediction. For the small extent, rain gauge data alone perform better than radar, while for larger extents with lower gauge densities, radar performs overall better than rain gauge data alone (OK). Methods using both radar and rain gauge data (KED and OCCK) prove to be more accurate than using either rain gauge data alone (OK) or radar, in particular, for larger extents. The added value of radar is positively related to the correlation between radar and rain gauge data. Using a pooled semivariogram is almost as good as using event-based semivariograms, which is convenient if the prediction is to be automated. An interesting result is that the pooled semivariograms perform better in terms of estimating the prediction error (kriging variance) especially for the small and medium extent, where the number of data points to estimate semivariograms is small and event-based semivariograms are rather unstable.


Sign in / Sign up

Export Citation Format

Share Document