The assembly of Pannotia: a thermal legacy for Pangaea?

Author(s):  
J. Brendan Murphy ◽  
R. Damian Nance ◽  
Philip J. Heron

<p>Controversy about the status of Pannotia (Laurentia + Baltica + Gondwana) as an Ediacaran supercontinent centers on palaeomagnetic data (which is permissive not conclusive) and geochronology (which implies breakup commenced before full assembly). But evidence of past supercontinent assembly is not limited to these two criteria and can be found in many other phenomena that accompany the process. Irrespective of whether Pannotia qualifies as a supercontinent, a key unanswered question is whether the legacy of its amalgamation influenced global mantle convection patterns because such patterns are generally ignored in models claiming the transition from Rodinia to Pangaea represents a single supercontinent cycle. We contend that the proxy signals of assembly and breakup in the Ediacaran are unmistakable and indicate profound changes in mantle circulation. These changes correlate with a wealth of geologic data for Pan-African collisional orogenesis, reflecting the amalgamation of the Gondwana, and for tectonothermal activity along the Gondwanan portion of Pannotia’s periphery.</p><p> </p><p>Collisional orogenesis necessitates subduction of oceanic lithosphere between the converging continental blocks. By analogy with the amalgamation of Pangea, the subducted oceanic lithosphere should have congregated to form a “slab graveyard” along the core-mantle boundary that would have generated a superplume beneath the Gondwanan component of Pannotia, the effects of which can be seen along its margins. We suggest that such dramatic changes in mantle convection patterns can indeed be recognized, they provide insights into the processes responsible for the opening of the Iapetus and Rheic oceans, and a potential explanation for some of the enigmatic tectonothermal events that characterize the Late Neoproterozoic-Early Paleozoic tectonic evolution of the margin of Gondwana.</p>

The Precambrian apparent polar wander (a.p.w.) curve for Africa is now defined in a general way from ca . 2700 million years (Ma) to Palaeozoic times, and is compared here with palaeomagnetic results from other Precambrian regions. Loops present in the African and North American a.p.w. curves between 2000 and 1000 Ma can be matched in size and shape, and when superimposed show that the AfroArabian and North American regions were in continuity at this time. Data from other Gondwanaland continents are reviewed and seem to be consistent with the SmithHallam reconstruction to ca . 2100 Ma for South America, to ca . 1800 Ma for India, and possibly for Australia back to ca . 2100 Ma. The a.p.w. curve from the Baltic and Ukrainian Shields can be matched with that from Africa and North America such that there was crustal continuity prior to 1000 Ma with the Gothide and Grenville mobile belts in great-circle alignment. The limited palaeomagnetic data from the Siberian Shield do not allow it to be placed uniquely with respect to the other land masses but are consistent with a position in juxtaposition with the Baltic-Ukrainian Shields such that massive anorthosites and ca . 1000 Ma mobile belts are in alignment with those from elsewhere. The palaeomagnetic evidence is consistent with a model in which the bulk of the Precambrian shields were aggregated together as a single super-continent during much of Proterozoic times, the most prominent feature of which is a great circle alignment of massive anorthosites (2250-1000 Ma) along a belt which also became a concentrated zone of igneous intrusion by rapakivi granites and alkaline intrusions, and culminated in generation of long linear mobile belts at 1150 ± 200 Ma and thick graben sedimentation. The predominance of this feature during much of the Proterozoic suggests that a simple mantle convection system pertained during this time. The proposed super-continent is not greatly different in form from the later shortlived super-continent Pangaea, formation of which may have involved relatively minor redistribution of the sialic regions in late Precambrian (probably post-800 Ma) and Palaeozoic times.


1995 ◽  
Vol 38 (2) ◽  
Author(s):  
F. Florindo ◽  
F. Marra

All improved knowledge of the stratigraphy of the Rome area has been achieved trom the interpretation and correlation of a large number of stratigraphic logs from drillings, stored in a data bank by the Istituto Nazionale di Geofisica which allowed the authors to identify a succession of "unconformity-bounded strati- graphic units". The possibility of correlating these stratigraphic units with the oxygen jsotope time scale is suggested leading to a substantial revision of the Quaternary stratigraphy of the Rome area. This paper pre- sents the results of a magnetostratigraphic study on a repere layer in Rome, demonstrating that this layer can- not be correlated with the basaI members ofthe formation outcropping in the type-site (Helicella clays, "Ponte Galeria Formation" ), as recently proposed as a result of morpho-stratigraphical studies with important implica- tions concerning the interpretation of the recent sedimentary and tectonic evolution of this area.


2010 ◽  
Vol 84 (3) ◽  
pp. 363-401 ◽  
Author(s):  
Vladimir N. Sergeev ◽  
J. William Schopf

Carbonaceous bedded cherts of the late Neoproterozoic (Cryogenian) ∼800 to 750 Ma old Chichkan Formation of South Kazakhstan contain an abundant, diverse assemblage of exquisitely preserved microorganisms. Like many Proterozoic microbiotas, the Chichkan assemblage is dominated by prokaryotic cyanobacteria, both filamentous (oscillatorialeans and nostocaleans, represented primarily by cellular trichomes and empty sheaths) and coccoidal (chroococcaleans and pleurocapsaleans, including solitary, colonial, and stalk-forming specimens). However, unlike Proterozoic microbiotas reported from peritidal settings, the Chichkan fossils, permineralized in cherts deposited in the open shelf facies of the formation, include diverse microscopic eukaryotes: vase-shaped testate amoebae, spiny (acanthomorphic) phytoplanktonic unicells, large (up to ∼1 mm diameter) megasphaeromorphic acritarchs, and sausage-shaped vaucheriacean green alga-like filaments.Given the composition of this biota and the presence in it and similarly aged assemblages of numerous taxa typical of late Neoproterozoic deposits (e.g., Cerebrosphaera, Jacutianema, Melanocyrillium, Stictosphaeridium, Trachyhystrichosphaera, and Vandalosphaeridium), the Chichkan Lagerstätte appears representative of the Cryogenian biota as now known, thereby documenting the status of the marine biosphere at a time closely preceding the radiation of the Metazoa. As such, we interpret this and other coeval mixed assemblages of prokaryotic and eukaryotic microfossils as representing an evolutionary stage transitional between the predominantly prokaryote-dominated Precambrian and the eukaryote-dominated Phanerozoic biospheres.As reported here, the Chichkan assemblage is composed of 39 taxa (of which two forms are described informally) that are assigned to 23 genera of microscopic prokaryotes and eukaryotes and that include two new species: Polybessurus crassus n. sp. and Vandalosphaeridium koksuicum n. sp.


2021 ◽  
Author(s):  
Matteo Desiderio ◽  
Anna J. P. Gülcher ◽  
Maxim D. Ballmer

<p>According to geochemical and geophysical observations, Earth's lower mantle appears to be strikingly heterogeneous in composition. An accurate interpretation of these findings is critical to constrain Earth's bulk composition and long-term evolution. To this end, two main models have gained traction, each reflecting a different style of chemical heterogeneity preservation: the 'marble cake' and 'plum pudding' mantle. In the former, heterogeneity is preserved in the form of narrow streaks of recycled oceanic lithosphere, stretched and stirred throughout the mantle by convection. In the latter, domains of intrinsically strong, primordial material (enriched in the lower-mantle mineral bridgmanite) may resist convective entrainment and survive as coherent blobs in the mid mantle. Microscopic scale processes certainly affect macroscopic properties of mantle materials and thus reverberate on large-scale mantle dynamics. A cross-disciplinary effort is therefore needed to constrain present-day Earth structure, yet countless variables remain to be explored. Among previous geodynamic studies, for instance, only few have attempted to address how the viscosity and density of recycled and primordial materials affect their mutual mixing and interaction in the mantle.</p><p>Here, we apply the finite-volume code <strong>STAGYY</strong> to model thermochemical convection of the mantle in a 2D spherical-annulus geometry. All models are initialized with a lower, primordial layer and an upper, pyrolitic layer (i.e., a mechanical mixture of basalt and harzburgite), as is motivated by magma-ocean solidification studies. We explore the effects of material properties on the style of mantle convection and heterogeneity preservation. These parameters include (i) the intrinsic strength of basalt (viscosity), (ii) the intrinsic density of basalt, and (iii) the intrinsic strength of the primordial material.</p><p>Our preliminary models predict a range of different mantle mixing styles. A 'marble cake'-like regime is observed for low-viscosity primordial material (~30 times weaker than the ambient mantle), with recycled oceanic lithosphere preserved as streaks and thermochemical piles accumulating near the core-mantle boundary. Conversely, 'plum pudding' primordial blobs are also preserved when the primordial material is relatively strong, in addition to the 'marble cake' heterogeneities mentioned above. Most notably, however, the rheology and the density anomaly of basalt affect the appearance of both recycled and primordial heterogeneities. In particular, they control the stability, size and geometry of thermochemical piles, the enhancement of basaltic streaks in the mantle transition zone, and they influence the style of primordial material preservation. These results indicate the important control that the physical properties of mantle constituents exert on the style of mantle convection and mixing over geologic time. Our numerical models offer fresh insights into these processes and may advance our understanding of the composition and structure of Earth's lower mantle.</p>


Author(s):  
Chen Wu ◽  
Jie Li ◽  
Andrew V. Zuza ◽  
Peter J. Haproff ◽  
Xuanhua Chen ◽  
...  

The Proterozoic−Phanerozoic tectonic evolution of the Qilian Shan, Qaidam Basin, and Eastern Kunlun Range was key to the construction of the Asian continent, and understanding the paleogeography of these regions is critical to reconstructing the ancient oceanic domains of central Asia. This issue is particularly important regarding the paleogeography of the North China-Tarim continent and South China craton, which have experienced significant late Neoproterozoic rifting and Phanerozoic deformation. In this study, we integrated new and existing geologic field observations and geochronology across northern Tibet to examine the tectonic evolution of the Qilian-Qaidam-Kunlun continent and its relationships with the North China-Tarim continent to the north and South China craton to the south. Our results show that subduction and subsequent collision between the Tarim-North China, Qilian-Qaidam-Kunlun, and South China continents occurred in the early Neoproterozoic. Late Neoproterozoic rifting opened the North Qilian, South Qilian, and Paleo-Kunlun oceans. Opening of the South Qilian and Paleo-Kunlun oceans followed the trace of an early Neoproterozoic suture. The opening of the Paleo-Kunlun Ocean (ca. 600 Ma) occurred later than the opening of the North and South Qilian oceans (ca. 740−730 Ma). Closure of the North Qilian and South Qilian oceans occurred in the Early Silurian (ca. 440 Ma), whereas the final consumption of the Paleo-Kunlun Ocean occurred in the Devonian (ca. 360 Ma). Northward subduction of the Neo-Kunlun oceanic lithosphere initiated at ca. 270 Ma, followed by slab rollback beginning at ca. 225 Ma evidenced in the South Qilian Shan and at ca. 194 Ma evidenced in the Eastern Kunlun Range. This tectonic evolution is supported by spatial trends in the timing of magmatism and paleo-crustal thickness across the Qilian-Qaidam-Kunlun continent. Lastly, we suggest that two Greater North China and South China continents, located along the southern margin of Laurasia, were separated in the early Neoproterozoic along the future Kunlun-Qinling-Dabie suture.


Sign in / Sign up

Export Citation Format

Share Document