Global reconstruction of surface temperature fields for past equilibrium climates

Author(s):  
Julia Hargreaves ◽  
James Annan

<p>Paleoclimate simulations are widely used as a test of the ability of climate models to simulate climate states that are substantially different to the present day, and quantitative reconstructions of these climate states is an essential component of model evaluation.  With there being no large network of instrumental observations from these periods, we must rely on inferences from a relatively modest number of unevenly distributed proxy records which are believed to be quantitatively indicative of the climate state.  In order to robustly establish climatic conditions over global scales, we require methods for smoothing and interpolating between these sparse and imperfect estimates.  In recent years, we have worked on this problem and created a global reconstruction of the Last Glacial Maximum [Annan and Hargreaves, 2013, Climate of the Past] using the data and models which were available at that time.  The method uses scaled patterns from the PMIP ensemble of structurally diverse climate simulations, combined with sparse sets of proxy data, to produce spatially coherent and complete  data  fields  for  surface  air  and  sea  temperatures  (potentially  including  the  seasonal cycle)  along  with  uncertainty  estimates  over  the  whole  field.   This  approach  is  more  robust than alternative methods, which either perform a purely statistical interpolation of the data or at best combine the data with a single climate model. Here, we aim to improve the method, update the inputs, and apply the same technique to both Last Glacial Maximum and mid Pliocene climate intervals. As well as generating spatially complete and coherent maps of climate variables, our approach also generates well-calibrated uncertainty estimates.</p>

2013 ◽  
Vol 9 (5) ◽  
pp. 2319-2333 ◽  
Author(s):  
X. Zhang ◽  
G. Lohmann ◽  
G. Knorr ◽  
X. Xu

Abstract. The last deglaciation is one of the best constrained global-scale climate changes documented by climate archives. Nevertheless, understanding of the underlying dynamics is still limited, especially with respect to abrupt climate shifts and associated changes in the Atlantic meridional overturning circulation (AMOC) during glacial and deglacial periods. A fundamental issue is how to obtain an appropriate climate state at the Last Glacial Maximum (LGM, 21 000 yr before present, 21 ka BP) that can be used as an initial condition for deglaciation. With the aid of a comprehensive climate model, we found that initial ocean states play an important role on the equilibrium timescale of the simulated glacial ocean. Independent of the initialization, the climatological surface characteristics are similar and quasi-stationary, even when trends in the deep ocean are still significant, which provides an explanation for the large spread of simulated LGM ocean states among the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2) models. Accordingly, we emphasize that caution must be taken when alleged quasi-stationary states, inferred on the basis of surface properties, are used as a reference for both model inter-comparison and data model comparison. The simulated ocean state with the most realistic AMOC is characterized by a pronounced vertical stratification, in line with reconstructions. Hosing experiments further suggest that the response of the glacial ocean is dependent on the ocean background state, i.e. only the state with robust stratification shows an overshoot behavior in the North Atlantic. We propose that the salinity stratification represents a key control on the AMOC pattern and its transient response to perturbations. Furthermore, additional experiments suggest that the stratified deep ocean formed prior to the LGM during a time of minimum obliquity (~ 27 ka BP). This indicates that changes in the glacial deep ocean already occur before the last deglaciation. In combination, these findings represent a new paradigm for the LGM and the last deglaciation, which challenges the conventional evaluation of glacial and deglacial AMOC changes based on an ocean state derived from 21 ka BP boundary conditions.


2016 ◽  
Vol 12 (1) ◽  
pp. 151-170 ◽  
Author(s):  
M. Stärz ◽  
G. Lohmann ◽  
G. Knorr

Abstract. In order to account for coupled climate–soil processes, we have developed a soil scheme which is asynchronously coupled to a comprehensive climate model with dynamic vegetation. This scheme considers vegetation as the primary control of changes in physical soil characteristics. We test the scheme for a warmer (mid-Holocene) and colder (Last Glacial Maximum) climate relative to the preindustrial climate. We find that the computed changes in physical soil characteristics lead to significant amplification of global climate anomalies, representing a positive feedback. The inclusion of the soil feedback yields an extra surface warming of 0.24 °C for the mid-Holocene and an additional global cooling of 1.07 °C for the Last Glacial Maximum. Transition zones such as desert–savannah and taiga–tundra exhibit a pronounced response in the model version with dynamic soil properties. Energy balance model analyses reveal that our soil scheme amplifies the temperature anomalies in the mid-to-high northern latitudes via changes in the planetary albedo and the effective longwave emissivity. As a result of the modified soil treatment and the positive feedback to climate, part of the underestimated mid-Holocene temperature response to orbital forcing can be reconciled in the model.


2020 ◽  
Vol 132 (11-12) ◽  
pp. 2669-2683
Author(s):  
L.M. Santi ◽  
A.J. Arnold ◽  
D.E. Ibarra ◽  
C.A. Whicker ◽  
J.A. Mering ◽  
...  

Abstract During the Last Glacial Maximum (LGM) and subsequent deglaciation, the Great Basin in the southwestern United States was covered by numerous extensive closed-basin lakes, in stark contrast with the predominately arid climate observed today. This transition from lakes in the Late Pleistocene to modern aridity implies large changes in the regional water balance. Whether these changes were driven by increased precipitation rates due to changes in atmospheric dynamics, decreased evaporation rates resulting from temperature depression and summer insolation changes, or some combination of the two remains uncertain. The factors contributing to these large-scale changes in hydroclimate are critical to resolve, given that this region is poised to undergo future anthropogenic-forced climate changes with large uncertainties in model simulations for the 21st century. Furthermore, there are ambiguous constraints on the magnitude and even the sign of changes in key hydroclimate variables between the Last Glacial Maximum and the present day in both proxy reconstructions and climate model analyses of the region. Here we report thermodynamically derived estimates of changes in temperature, precipitation, and evaporation rates, as well as the isotopic composition of lake water, using clumped isotope data from an ancient lake in the northwestern Great Basin, Lake Surprise (California). Compared to modern climate, mean annual air temperature at Lake Surprise was 4.7 °C lower during the Last Glacial Maximum, with decreased evaporation rates and similar precipitation rates to modern. During the mid-deglacial period, the growth of Lake Surprise implied that the lake hydrologic budget briefly departed from steady state. Our reconstructions indicate that this growth took place rapidly, while the subsequent lake regression took place over several thousand years. Using models for precipitation and evaporation constrained from clumped isotope results, we determine that the disappearance of Lake Surprise coincided with a moderate increase in lake temperature, along with increasing evaporation rates outpacing increasing precipitation rates. Concomitant analysis of proxy data and climate model simulations for the Last Glacial Maximum are used to provide a robust means to understand past climate change, and by extension, predict how current hydroclimates may respond to expected future climate forcings. We suggest that an expansion of this analysis to more basins across a larger spatial scale could provide valuable insight into proposed climate forcings, and aid in climate model process depiction. Ultimately, our analysis highlights the importance of temperature-driven evaporation as a mechanism for lake growth and retreat in this region.


2020 ◽  
Author(s):  
Masa Kageyama ◽  

<p>The Last Glacial Maximum (LGM, ~21,000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models have been used to generate LGM simulations as part of the Palaeoclimate Modelling Intercomparison Project (PMIP) contributionto CMIP6. Here we provide a preliminary analysis and evaluation of the results of these LGM experiments and compare them with the previous generation of simulations (PMIP3-CMIP5). We show that the PMIP4-CMIP6 are globally less cold and less dry than the PMIP3-CMIP5 simulations, most probably because of the use of a more realistic specification of the northern hemisphere ice sheets in the latest simulations although changes in model configuration may also contribute to this. There are important differences in both atmospheric and ocean circulation between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large so, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land-sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the palaeoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. The spatial patterns of increased precipitation associated with changes in the jet streams are also poorly captured. However, changes in the tropics are more realistic, particularly the changes in tropical temperatures over the oceans. Although these results are preliminary in nature, because of the limited number of LGM simulations currently available, they nevertheless point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.</p>


2003 ◽  
Vol 59 (2) ◽  
pp. 223-233 ◽  
Author(s):  
K.o van Huissteden ◽  
David Pollard

AbstractFluvial and eolian successions of oxygen isotope stage 3 are compared with global (GCM) and regional climate (RCM) modeling experiments of the stage 3 and last glacial maximum climate in Europe. Differences in precipitation between stage-3 stades and interstades were minor, which is confirmed by the fluvial successions. The fluvial response to climate variation is non-uniform, and in southern Europe more pronounced than in northern Europe. The model simulations indicate a strong western winter circulation over Europe during stage 3, which is supported by the eolian deposits data. Wind speeds in the last glacial maximum simulation appear modest compared with those of stage 3, which contrasts with the abundance of eolian deposits. This suggests that during glacial climates the stabilizing effect of vegetation determines eolian sedimentation rates, rather than wind speed. Stage 3 can be divided into an older part (>45,000 cal yr B.P.) with a relatively stable landscape and moist climate and a younger part with more frequent climate change and decreasing landscape stability.


2013 ◽  
Vol 9 (1) ◽  
pp. 367-376 ◽  
Author(s):  
J. D. Annan ◽  
J. C. Hargreaves

Abstract. Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012), have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007) to generate a spatially complete reconstruction of surface air (and sea surface) temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI).


Science ◽  
2021 ◽  
Vol 372 (6546) ◽  
pp. 1097-1101
Author(s):  
Christo Buizert ◽  
T. J. Fudge ◽  
William H. G. Roberts ◽  
Eric J. Steig ◽  
Sam Sherriff-Tadano ◽  
...  

Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with the use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


Sign in / Sign up

Export Citation Format

Share Document