SFM-Forest-Benchmark project: The benchmarking of image-based point cloud for forest inventory

Author(s):  
Martin Mokros ◽  
Markus Hollaus ◽  
Yunsheng Wang ◽  
Xinlian Liang

<p>The benchmarking project of image-based point cloud for forest inventory (SFM-Forest-Benchmark) was initiated in 2019 and supported by ISPRS Scientific Initiative 2019. The main goal of the project was the evaluation of the applicability of terrestrial image-based point clouds for forest inventories, the clarification of the potential and limitations of the state-of-the-art techniques, and the exploration of the best practices in practical field inventories. In the project, related tree parameter (i.e. tree position diameter at breast height - DBH) were derived from 14 algorithms and evaluated using field inventory data as a reference. In order to clarify the potential of terrestrial image-based point clouds, the results from the image-based point clouds were also compared to results derived from the best available point clouds obtained by terrestrial laser scanning (TLS).</p><p>The project is consisted of two phases. In the first phase, we established two research plots in each country (Austria, China, Czech, Finland and Slovakia), ten plots in total. The stem density ranged from 272 to 875 stems/ha and plot size ranged approximately from 700 to 2500 m<sup>2</sup>. Dominant tree species across research plots were Norway spruce, European beech, bald cypress, Chinese tulip poplar, Scots pine, European silver fir and sessile oak. TLS, images and reference data acquisition were performed on each study site, where TLS data were acquired through multi-scan approach, images were taken in the stop-and-go mode, and tree positions and the DBHs were measured with a tachymeter and a calliper as field references. Images were processed with structure from motion algorithm within Agisoft Metashape software to final point clouds. The TLS data was pre-processed with RiProcess software. And, the co-registration of all three data sources (TLS, SFM, and reference data) was done with OPALS software.</p><p>In the benchmarking phase, we distributed point clouds to participants of the benchmark. Altogether 14 different research groups processed the data with own algorithms. The individual results are evaluated through the reference to clarify the applicability of the image-point clouds in deriving tree parameters, were compared to each other to reveal the state-of-the-art of technologies, and were benchmarked to the up-to-data the most accurate data from TLS to explore the strength and weakness of the image-based point cloud. In this presentation the first benchmark results will be presented and discussed.</p><p>All images and point clouds collected for this project will be available as open access data for non-commercial uses.</p>

2021 ◽  
Vol 10 (6) ◽  
pp. 380
Author(s):  
Václav Šafář ◽  
Markéta Potůčková ◽  
Jakub Karas ◽  
Jan Tlustý ◽  
Eva Štefanová ◽  
...  

The main challenge in the renewal and updating of the Cadastre of Real Estate of the Czech Republic is to achieve maximum efficiency but to retain the required accuracy of all points in the register. The paper discusses the possibility of using UAV photogrammetry and laser scanning for cadastral mapping in the Czech Republic. Point clouds from images and laser scans together with orthoimages were derived over twelve test areas. Control and check points were measured using geodetic methods (RTK-GNSS and total stations). The accuracy of the detailed survey based on UAV technologies was checked on hundreds of points, mainly building corners and fence foundations. The results show that the required accuracy of 0.14 m was achieved on more than 80% and 98% of points in the case of the image point clouds and orthoimages and the case of the LiDAR point cloud, respectively. Nevertheless, the methods lack completeness of the performed survey that must be supplied by geodetic measurements. The paper also provides a comparison of the costs connected to traditional and UAV-based cadastral mapping, and it addresses the necessary changes in the organisational and technological processes in order to utilise the UAV based technologies.


2021 ◽  
Author(s):  
Lingfei Ma ◽  
Ying Li ◽  
Jonathan Li ◽  
Cheng Wang ◽  
Ruisheng Wang ◽  
...  

The mobile laser scanning (MLS) technique has attracted considerable attention for providing high-density, high-accuracy, unstructured, three-dimensional (3D) geo-referenced point-cloud coverage of the road environment. Recently, there has been an increasing number of applications of MLS in the detection and extraction of urban objects. This paper presents a systematic review of existing MLS related literature. This paper consists of three parts. Part 1 presents a brief overview of the state-of-the-art commercial MLS systems. Part 2 provides a detailed analysis of on-road and off-road information inventory methods, including the detection and extraction of on-road objects (e.g., road surface, road markings, driving lines, and road crack) and off-road objects (e.g., pole-like objects and power lines). Part 3 presents a refined integrated analysis of challenges and future trends. Our review shows that MLS technology is well proven in urban object detection and extraction, since the improvement of hardware and software accelerate the efficiency and accuracy of data collection and processing. When compared to other review papers focusing on MLS applications, we review the state-of-the-art road object detection and extraction methods using MLS data and discuss their performance and applicability. The main contribution of this review demonstrates that the MLS systems are suitable for supporting road asset inventory, ITS-related applications, high-definition maps, and other highly accurate localization services.


2021 ◽  
Vol 7 (1) ◽  
pp. 1-24
Author(s):  
Piotr Tompalski ◽  
Nicholas C. Coops ◽  
Joanne C. White ◽  
Tristan R.H. Goodbody ◽  
Chris R. Hennigar ◽  
...  

Abstract Purpose of Review The increasing availability of three-dimensional point clouds, including both airborne laser scanning and digital aerial photogrammetry, allow for the derivation of forest inventory information with a high level of attribute accuracy and spatial detail. When available at two points in time, point cloud datasets offer a rich source of information for detailed analysis of change in forest structure. Recent Findings Existing research across a broad range of forest types has demonstrated that those analyses can be performed using different approaches, levels of detail, or source data. By reviewing the relevant findings, we highlight the potential that bi- and multi-temporal point clouds have for enhanced analysis of forest growth. We divide the existing approaches into two broad categories— – approaches that focus on estimating change based on predictions of two or more forest inventory attributes over time, and approaches for forecasting forest inventory attributes. We describe how point clouds acquired at two or more points in time can be used for both categories of analysis by comparing input airborne datasets, before discussing the methods that were used, and resulting accuracies. Summary To conclude, we outline outstanding research gaps that require further investigation, including the need for an improved understanding of which three-dimensional datasets can be applied using certain methods. We also discuss the likely implications of these datasets on the expected outcomes, improvements in tree-to-tree matching and analysis, integration with growth simulators, and ultimately, the development of growth models driven entirely with point cloud data.


Author(s):  
F. Li ◽  
M. Lehtomäki ◽  
S. Oude Elberink ◽  
G. Vosselman ◽  
E. Puttonen ◽  
...  

Pole-like road furniture detection received much attention due to its traffic functionality in recent years. In this paper, we develop a framework to detect pole-like road furniture from sparse mobile laser scanning data. The framework is carried out in four steps. The unorganised point cloud is first partitioned. Then above ground points are clustered and roughly classified after removing ground points. A slicing check in combination with cylinder masking is proposed to extract pole-like road furniture candidates. Pole-like road furniture are obtained after occlusion analysis in the last stage. The average completeness and correctness of pole-like road furniture in sparse and unevenly distributed mobile laser scanning data was above 0.83. It is comparable to the state of art in the field of pole-like road furniture detection in mobile laser scanning data of good quality and is potentially of practical use in the processing of point clouds collected by autonomous driving platforms.


2018 ◽  
Vol 10 (10) ◽  
pp. 1531 ◽  
Author(s):  
Lingfei Ma ◽  
Ying Li ◽  
Jonathan Li ◽  
Cheng Wang ◽  
Ruisheng Wang ◽  
...  

The mobile laser scanning (MLS) technique has attracted considerable attention for providing high-density, high-accuracy, unstructured, three-dimensional (3D) geo-referenced point-cloud coverage of the road environment. Recently, there has been an increasing number of applications of MLS in the detection and extraction of urban objects. This paper presents a systematic review of existing MLS related literature. This paper consists of three parts. Part 1 presents a brief overview of the state-of-the-art commercial MLS systems. Part 2 provides a detailed analysis of on-road and off-road information inventory methods, including the detection and extraction of on-road objects (e.g., road surface, road markings, driving lines, and road crack) and off-road objects (e.g., pole-like objects and power lines). Part 3 presents a refined integrated analysis of challenges and future trends. Our review shows that MLS technology is well proven in urban object detection and extraction, since the improvement of hardware and software accelerate the efficiency and accuracy of data collection and processing. When compared to other review papers focusing on MLS applications, we review the state-of-the-art road object detection and extraction methods using MLS data and discuss their performance and applicability. The main contribution of this review demonstrates that the MLS systems are suitable for supporting road asset inventory, ITS-related applications, high-definition maps, and other highly accurate localization services.


2021 ◽  
Author(s):  
Lingfei Ma ◽  
Ying Li ◽  
Jonathan Li ◽  
Cheng Wang ◽  
Ruisheng Wang ◽  
...  

The mobile laser scanning (MLS) technique has attracted considerable attention for providing high-density, high-accuracy, unstructured, three-dimensional (3D) geo-referenced point-cloud coverage of the road environment. Recently, there has been an increasing number of applications of MLS in the detection and extraction of urban objects. This paper presents a systematic review of existing MLS related literature. This paper consists of three parts. Part 1 presents a brief overview of the state-of-the-art commercial MLS systems. Part 2 provides a detailed analysis of on-road and off-road information inventory methods, including the detection and extraction of on-road objects (e.g., road surface, road markings, driving lines, and road crack) and off-road objects (e.g., pole-like objects and power lines). Part 3 presents a refined integrated analysis of challenges and future trends. Our review shows that MLS technology is well proven in urban object detection and extraction, since the improvement of hardware and software accelerate the efficiency and accuracy of data collection and processing. When compared to other review papers focusing on MLS applications, we review the state-of-the-art road object detection and extraction methods using MLS data and discuss their performance and applicability. The main contribution of this review demonstrates that the MLS systems are suitable for supporting road asset inventory, ITS-related applications, high-definition maps, and other highly accurate localization services.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 810 ◽  
Author(s):  
Erzhuo Che ◽  
Jaehoon Jung ◽  
Michael Olsen

Mobile Laser Scanning (MLS) is a versatile remote sensing technology based on Light Detection and Ranging (lidar) technology that has been utilized for a wide range of applications. Several previous reviews focused on applications or characteristics of these systems exist in the literature, however, reviews of the many innovative data processing strategies described in the literature have not been conducted in sufficient depth. To this end, we review and summarize the state of the art for MLS data processing approaches, including feature extraction, segmentation, object recognition, and classification. In this review, we first discuss the impact of the scene type to the development of an MLS data processing method. Then, where appropriate, we describe relevant generalized algorithms for feature extraction and segmentation that are applicable to and implemented in many processing approaches. The methods for object recognition and point cloud classification are further reviewed including both the general concepts as well as technical details. In addition, available benchmark datasets for object recognition and classification are summarized. Further, the current limitations and challenges that a significant portion of point cloud processing techniques face are discussed. This review concludes with our future outlook of the trends and opportunities of MLS data processing algorithms and applications.


2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


Sign in / Sign up

Export Citation Format

Share Document