Locating sources of variability in the transition to Structural Vacillation in the baroclinic annulus

Author(s):  
Wolf-Gerrit Fruh ◽  
Peter Szabo ◽  
Christoph Egbers ◽  
Harlander Uwe

<p>The baroclinic rotating annulus is a classic experiment to investigate the transition from regular waves to complex flows.  A well documented transition via Amplitude Vacillation leads to low-dimensional chaos through a sequence of canonical bifurcations.  However, the transition to geostrophic turbulence is usually through a regime of 'Structural Vacillation' (SV) which retains the overall spatial structure of regular waves but includes small-scale variability.  Even though the SV vacillation occurs with a clear time scale, the dynamics of SV cannot usually be described by low-dimensional dynamics.  For example, attractor dimension estimations tend to fail: they may not show any scaling region or converge to an unrealistic values.  Explanations of the origin of SV have variously invoked higher radial modes of the fundamental baroclinic waves, local secondary instabilities in the baroclinic waves caused by high thermal gradients (gravity waves) or velocity shear (barotropic instability), or instabilities within the side-wall (Stewartson) boundary layers.</p><p>The aim of this paper is to identify where within the fluid different signals of variability are located at different stages in the transition from a steady wave to pronounced SV.   To this end, a set of experiments in a water-filled rotating annulus with a free surface (inner radius 45 mm, outer radius 120 mm, fluid depth 140 mm) was carried out covering a temperature difference between the heated outer wall and the cooler inner wall of between 6 and 9.5 K, and a range of rotation rates from 0.84 to 2.29 rad/s (<em>Ta</em>= 4.75 x 10<sup>7</sup> - 3.53 x 10<sup>8</sup> and <em>Θ</em> = 0.0617 - 0.629).   The flow was observed through an infrared camera capturing the temperatures of the free surface.  Images of the flow were recorded for a period of 15 minutes at a sampling rate of 1 Hz at the lower rotation rates and 2 Hz at the higher rotation rates.</p><p>The initial processing of the time series of temperature images involved normalisation of the temperatures followed by rotation of the images to a coordinate system co-rotating with the main baroclinic wave mode. The resulting images were separated into the time-mean wave field and the fluctuation field, resulting in a set of normalised temperature fluctuations at fixed points relative to the main baroclinic wave.   Each of the time series was then used to calculate the power spectrum at that location.  The low-frequency part of the spectra (up until half the tank rotation frequency) was used in a k-means cluster analysis to identify clusters of similar spectral shape and, from this, create a map of which spectral shape was found at which location in the flow field.</p><p>The results show isolated locations of a high frequency peak near the inner boundary at the onset of visible fluctuations.  Further into the regime of clear structural vacillations, areas of pronounced variability at lower frequencies become visible at the lee shoulder of the cold jets in the fluid interior, followed by activity where the end of the cold jet interacts with the hot jet emanating from the outer boundary layer.</p>

2012 ◽  
Vol 42 (10) ◽  
pp. 1701-1716 ◽  
Author(s):  
Eric D. Skyllingstad ◽  
R. M. Samelson

Abstract Interaction between mixed layer baroclinic eddies and small-scale turbulence is studied using a nonhydrostatic large-eddy simulation (LES) model. Free, unforced flow evolution is considered, for a standard initialization consisting of an 80-m-deep mixed layer with a superposed warm filament and two frontal interfaces in geostrophic balance, on a model domain roughly 5 km × 10 km × 120 m, with an isotropic 3-m computational grid. Results from these unforced experiments suggest that shear generated in narrow frontal zones can support weak three-dimensional turbulence that is directly linked to the larger-scale baroclinic waves. Two separate but closely related issues are addressed: 1) the possible development of enhanced turbulent mixing associated with the baroclinic wave activity and 2) the existence of a downscale transfer of energy from the baroclinic wave scale to the turbulent dissipation scale. The simulations show enhanced turbulence associated with the baroclinic waves and enhanced turbulent heat flux across the isotherms of the imposed frontal boundary, relative to background levels. This turbulence develops on isolated small-scale frontal features that form as the result of frontogenetic processes operating on the baroclinic wave scale and not as the result of a continuous, inertial forward cascade through the intermediate scales. Analysis of the spectrally decomposed kinetic energy budget indicates that large-scale baroclinic eddy energy is directly transferred to small-scale turbulence, with weaker forcing at intermediate scales. For fronts with significant baroclinic wave activity, cross-frontal eddy fluxes computed from correlations of fluctuations from means along the large-scale frontal axis generally agreed with simple theoretical estimates.


Author(s):  
Rafael de Andrade Watai ◽  
Fabio Tadao Matsumoto ◽  
Joa˜o Vicente Sparano ◽  
Alexandre Nicolaos Simos ◽  
Marcos Donato A. S. Ferreira

Since July 2008, the Numerical Offshore Tank (TPN) of the University of Sa˜o Paulo and Petrobras have been working on a research project intended to improve knowledge and modeling of advanced hydrodynamics topics, such as the wave run-up phenomenon. Among other activities, wave basin tests were performed with small-scale model of a large volume semi-submersible designed to operate in Campos Basin. These tests evidenced significant run-up effects on its squared-section columns for the steepest waves in several design conditions. In order to evaluate the difficulties involved in modeling the wave run-up phenomenon, simplified tests were also carried out with the model fixed and moored in regular waves with varying steepness. Previous studies using a 2nd order BEM model and a VOF CFD code to predict free-surface elevations below the deck under regular waves were presented in Matsumoto et al. (2010). The studies illustrated considerable differences between the wave elevation results in fixed and moored model setup; however, by that time, the analysis of the moored model by a VOF CFD code was not yet complete. This paper, therefore, presents wave run-up estimations with a moving large volume semi-submersible platform performed with the CFD code ComFLOW, which solves the Navier-Stokes equations employing a local height function to the free surface displacement. The phenomenon is investigated by simulating the flow around the semi-submersible model under the influence of high steepness regular waves on a non-uniform grid. Platform motions, derived from a first order BEM code, are imposed and synchronized with the incoming wave. Aiming at avoiding numerical wave reflections, a damping zone is also applied and positioned downstream the platform model. Predicted results are compared to experimental data, measured by seven vertical wave probes located in different positions below the model deck. Although considerably time-consuming, it will be shown that simulations present very good agreement with the experimental results.


Author(s):  
Manuel Cobos ◽  
María Clavero ◽  
Sandro Longo ◽  
Asunción Baquerizo ◽  
Miguel Angel Losada

This research is an experimental study of ripple dynamic for regular waves propagating on horizontal and sloping beds in mid- and high-reflective conditions. Small-scale laboratory experiments were carried out on shoaling region (with non breaking waves) and sediment transport in bedload regime. Our experiments showed the key role that plays the reflection in ripple development. The spatial modulation of the free surface elevation due to reflection created sandbars. Ripples grew up in the region where sandbars were appearing. These patterns were gradually reproduced from breakwater to offshore. The incidence of sandbar created a bi-modal structure of ripple geometry. The larger ripples appeared in the crest of sandbars whereas smaller ripples were found in the troughs. Furthermore, it was found that the evolution of ripples at these two locations can be explained by means of different growth mechanisms. Finally, at equilibrium stages, ripple height converges reaching the same height along the sandbar while ripple length and steepness remains almost constant.


Author(s):  
Segen F. Estefen ◽  
Paulo Roberto da Costa ◽  
Eliab Ricarte ◽  
Marcelo M. Pinheiro

Wave energy is a renewable and non-polluting source and its use is being studied in different countries. The paper presents an overview on the harnessing of energy from waves and the activities associated with setting up a plant for extracting energy from waves in Port of Pecem, on the coast of Ceara State, Brazil. The technology employed is based on storing water under pressure in a hyperbaric chamber, from which a controlled jet of water drives a standard turbine. The wave resource at the proposed location is presented in terms of statistics data obtained from previous monitoring. The device components are described and small scale model tested under regular waves representatives of the installation region. Based on the experimental results values of prescribed pressures are identified in order to optimize the power generation.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


Author(s):  
Stefan Daum ◽  
Martin Greve ◽  
Renato Skejic

The present study is focused on performance issues of underwater vehicles near the free surface and gives insight into the analysis of a speed loss in regular deep water waves. Predictions of the speed loss are based on the evaluation of the total resistance and effective power in calm water and preselected regular wave fields w.r.t. the non-dimensional wave to body length ratio. It has been assumed that the water is sufficiently deep and that the vehicle is operating in a range of small to moderate Froude numbers by moving forward on a straight-line course with a defined encounter angle of incident regular waves. A modified version of the Doctors & Days [1] method as presented in Skejic and Jullumstrø [2] is used for the determination of the total resistance and consequently the effective power. In particular, the wave-making resistance is estimated by using different approaches covering simplified methods, i.e. Michell’s thin ship theory with the inclusion of viscosity effects Tuck [3] and Lazauskas [4] as well as boundary element methods, i.e. 3D Rankine source calculations according to Hess and Smith [5]. These methods are based on the linear potential fluid flow and are compared to fully viscous finite volume methods for selected geometries. The wave resistance models are verified and validated by published data of a prolate spheroid and one appropriate axisymmetric submarine model. Added resistance in regular deep water waves is obtained through evaluation of the surge mean second-order wave load. For this purpose, two different theoretical models based on potential flow theory are used: Loukakis and Sclavounos [6] and Salvesen et. al. [7]. The considered theories cover the whole range of important wavelengths for an underwater vehicle advancing in close proximity to the free surface. Comparisons between the outlined wave load theories and available theoretical and experimental data were carried out for a submerged submarine and a horizontal cylinder. Finally, the effective power and speed loss are discussed from a submarine operational point of view where the mentioned parameters directly influence mission requirements in a seaway. All presented results are carried out from the perspective of accuracy and efficiency within common engineering practice. By concluding current investigations in regular waves an outlook will be drawn to the application of advancing underwater vehicles in more realistic sea conditions.


2021 ◽  
Author(s):  
Ginaldi Ari Nugroho ◽  
Kosei Yamaguchi ◽  
Eiichi Nakakita ◽  
Masayuki K. Yamamoto ◽  
Seiji Kawamura ◽  
...  

<p>Detailed observation of small scale perturbation in the atmospheric boundary layer during the first generated cumulus cloud are conducted. Our target is to study this small scale perturbation, especially related to the thermal activity at the first generated cumulus cloud. The observation is performed during the daytime on August 17, 2018, and September 03, 2018. Location is focused in the urban area of Kobe, Japan. High-resolution instruments such as Boundary Layer Radar, Doppler Lidar, and Time Lapse camera are used in this observation. Boundary Layer Radar, and Doppler Lidar are used for clear air observation. Meanwhile Time Lapse Camera are used for cloud existence observation. The atmospheric boundary layer structure is analyzed based on vertical velocity profile, variance, skewness, and estimated atmospheric boundary layer height. Wavelet are used to observe more of the period of the thermal activity. Furthermore, time correlation between vertical velocity time series from height 0.3 to 2 km and image pixel of generated cloud time series are also discussed in this study.</p>


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


2019 ◽  
Vol 221 ◽  
pp. 707-721 ◽  
Author(s):  
Vaughn Smith ◽  
Carlos Portillo-Quintero ◽  
Arturo Sanchez-Azofeifa ◽  
Jose L. Hernandez-Stefanoni

Sign in / Sign up

Export Citation Format

Share Document