high frequency peak
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Casey Mullen ◽  
Sara E. Grineski ◽  
Timothy W. Collins ◽  
Daniel L. Mendoza

Fine particulate air pollution is harmful to children in myriad ways. While evidence is mounting that chronic exposures are associated with reduced academic proficiency, no research has examined the frequency of peak exposures. It is also unknown if pollution exposures influence academic proficiency to the same degree in all schools or if the level of children’s social disadvantage in schools modifies the effects, such that some schools’ academic proficiency levels are more sensitive to exposures. We address these gaps by examining the percentage of third grade students who tested below the grade level in math and English language arts (ELA) in Salt Lake County, Utah primary schools (n = 156), where fine particulate pollution is a serious health threat. More frequent peak exposures were associated with reduced math and ELA proficiency, as was greater school disadvantage. High frequency peak exposures were more strongly linked to lower math proficiency in more advantaged schools. Findings highlight the need for policies to reduce the number of days with peak air pollution.


Author(s):  
Miguel Morales-Navas ◽  
Sergio Castaño-Castaño ◽  
Cristian Pérez-Fernández ◽  
Ainhoa Sánchez-Gil ◽  
María Teresa Colomina ◽  
...  

Background: In recent years, ultrasonic vocalizations (USV) in pups has become established as a good tool for evaluating behaviors related to communication deficits and emotional states observed in autism spectrum disorder (ASD). Prenatal valproic acid (VPA) exposure leads to impairments and social behavior deficits associated with autism, with the effects of VPA being considered as a reliable animal model of ASD. Some studies also suggest that prenatal exposure to chlorpyrifos (CPF) could enhance autistic-like behaviors. Methods: In order to explore these similarities, in the present study we tested whether prenatal exposure to CPF at GD12.5–14.5 produces effects that are comparable to those produced by prenatal VPA exposure at GD12.5 in infant Wistar rats. Using Deep Squeek software, we evaluated total number of USVs, latency to the first call, mean call duration, principal frequency peak, high frequency peak, and type of calls. Results: Consistent with our hypothesis, we found that exposure to both CPF and VPA leads to a significantly smaller number of calls along with a longer latency to produce the first call. No significant effects were found for the remaining dependent variables. Conclusions: These results suggest that prenatal exposure to CPF could produce certain behaviors that are reminiscent of those observed in ASD patients.


2020 ◽  
Author(s):  
Wolf-Gerrit Fruh ◽  
Peter Szabo ◽  
Christoph Egbers ◽  
Harlander Uwe

<p>The baroclinic rotating annulus is a classic experiment to investigate the transition from regular waves to complex flows.  A well documented transition via Amplitude Vacillation leads to low-dimensional chaos through a sequence of canonical bifurcations.  However, the transition to geostrophic turbulence is usually through a regime of 'Structural Vacillation' (SV) which retains the overall spatial structure of regular waves but includes small-scale variability.  Even though the SV vacillation occurs with a clear time scale, the dynamics of SV cannot usually be described by low-dimensional dynamics.  For example, attractor dimension estimations tend to fail: they may not show any scaling region or converge to an unrealistic values.  Explanations of the origin of SV have variously invoked higher radial modes of the fundamental baroclinic waves, local secondary instabilities in the baroclinic waves caused by high thermal gradients (gravity waves) or velocity shear (barotropic instability), or instabilities within the side-wall (Stewartson) boundary layers.</p><p>The aim of this paper is to identify where within the fluid different signals of variability are located at different stages in the transition from a steady wave to pronounced SV.   To this end, a set of experiments in a water-filled rotating annulus with a free surface (inner radius 45 mm, outer radius 120 mm, fluid depth 140 mm) was carried out covering a temperature difference between the heated outer wall and the cooler inner wall of between 6 and 9.5 K, and a range of rotation rates from 0.84 to 2.29 rad/s (<em>Ta</em>= 4.75 x 10<sup>7</sup> - 3.53 x 10<sup>8</sup> and <em>Θ</em> = 0.0617 - 0.629).   The flow was observed through an infrared camera capturing the temperatures of the free surface.  Images of the flow were recorded for a period of 15 minutes at a sampling rate of 1 Hz at the lower rotation rates and 2 Hz at the higher rotation rates.</p><p>The initial processing of the time series of temperature images involved normalisation of the temperatures followed by rotation of the images to a coordinate system co-rotating with the main baroclinic wave mode. The resulting images were separated into the time-mean wave field and the fluctuation field, resulting in a set of normalised temperature fluctuations at fixed points relative to the main baroclinic wave.   Each of the time series was then used to calculate the power spectrum at that location.  The low-frequency part of the spectra (up until half the tank rotation frequency) was used in a k-means cluster analysis to identify clusters of similar spectral shape and, from this, create a map of which spectral shape was found at which location in the flow field.</p><p>The results show isolated locations of a high frequency peak near the inner boundary at the onset of visible fluctuations.  Further into the regime of clear structural vacillations, areas of pronounced variability at lower frequencies become visible at the lee shoulder of the cold jets in the fluid interior, followed by activity where the end of the cold jet interacts with the hot jet emanating from the outer boundary layer.</p>


2018 ◽  
Vol 849 ◽  
Author(s):  
Bjørn Hervold Riise ◽  
John Grue ◽  
Atle Jensen ◽  
Thomas B. Johannessen

Laboratory experiments with a bottom hinged surface-piercing cylinder, exposed to irregular deep water waves, are used to investigate high-frequency forcing. The focus is on the secondary load cycle, a strongly nonlinear phenomenon regarding the wave load on a vertical cylinder, first identified by Grue et al. (1993 Preprint Series. Mechanics and Applied Mathematics, pp. 1–30. University of Oslo, available at http://urn.nb.no/URN:NBN:no-52740; 1994 Ninth International Workshop on Water Waves and Floating Bodies (ed. M. Ohkusu), pp. 77–81, available at http://iwwwfb.org). For a total of 2166 single wave events, the force above $3\unicode[STIX]{x1D714}$ (where $\unicode[STIX]{x1D714}$ is the governing wave frequency) is used to identify and split the strongly nonlinear forces into two peaks: a high-frequency peak closely correlated in time with the wave crest when the total load is positive and a high-frequency peak defining the secondary load cycle which occurs close in time to the wave zero downcrossing when the total load is negative. The two peaks are studied by regression analysis as a function of either the Keulegan–Carpenter number ($KC$) or the Froude number ($Fr$). Regarding the secondary load cycle, the best correlation is found with $Fr$. The speed of the travelling edge of the undisturbed wave approximates the fluid velocity. A threshold value separating between small and large forces is found for $KC\sim 4$–5, indicating effects of flow separation. Alternatively, the threshold occurs for $Fr\sim 0.3$–0.4, indicating local wave effects at the scale of the cylinder diameter. The findings suggest that both effects are present and important.


2016 ◽  
Vol 25 (7) ◽  
pp. 070504 ◽  
Author(s):  
Chang-Yuan Chang ◽  
Xin Zhao ◽  
Fan Yang ◽  
Cheng-En Wu

2015 ◽  
Vol 113 (2) ◽  
pp. 647-656 ◽  
Author(s):  
Carlijn Andrea Vernooij ◽  
Martin Lakie ◽  
Raymond Francis Reynolds

Two frequency peaks of variable preponderance have been reported for human physiological finger tremor. The high-frequency peak (20–25 Hz, seen only in postural tremor) is generally attributed to mechanical resonance, whereas the lower frequency peak (8–12 Hz, seen in both postural and kinetic tremor) is usually attributed to synchronous central or reflexive neural drive. In this study, we determine whether mechanical resonance could generate both peaks. In relaxed subjects, an artificial finger tremor was evoked by random mechanical perturbations of the middle finger or random electrical muscular stimulation of the finger extensor muscle. The high and the low frequencies observed in physiological tremor could both be created by either type of artificial input at appropriate input intensity. Resonance, inferred from cross-spectral gain and phase, occurred at both frequencies. To determine any neural contribution, we compared truly passive subjects with those who exhibited some electromyographic (EMG) activity in the finger extensor; artificially created tremor spectra were almost identical between groups. We also applied electrical stimuli to two clinically deafferented subjects lacking stretch reflexes. They exhibited the same artificial tremor spectrum as control subjects. These results suggest that both typical physiological finger tremor frequencies can be reproduced by random artificial input; neither requires synchronized neural input. We therefore suggest that mechanical resonance could generate both dominant frequency peaks characteristic of physiological finger tremor. The inverse relationship between the input intensity and the resulting tremor frequency can be explained by a movement-dependent reduction in muscle stiffness, a conjecture we support using a simple computational model.


2014 ◽  
Vol 10 (S313) ◽  
pp. 91-92
Author(s):  
T. Pursimo ◽  
R. Ojha ◽  
E. Ferrara ◽  
F. Acero ◽  
H. Johnston ◽  
...  

AbstractThe majority of Fermi-LAT detected (2FGL) sources are AGN, mostly blazars. However, the second largest category in the 2FGL are unassociated sources (~30% or 575 sources), whose multi-wavelength counterpart is either inconclusive or absent. Follow-up observations and archival data at X-ray, optical, and radio frequencies suggest that many unassociated 2FGL sources are strong candidates to be AGN. Typical observed characteristics of 2FGL detected AGN include variability at all frequencies and a spectral energy distribution (SED) with two “bumps”; a low-frequency synchrotron peak in the radio to optical/X-ray region and a high-frequency peak, possibly due to synchrotron self-Compton or Inverse Compton processes, that extends up to TeV energies. We present optical follow-up observations of a sample of Fermi unassociated sources with one or more potential X-ray counterparts detected within the LAT error circle.


2010 ◽  
Vol 15 (4) ◽  
pp. 837-843 ◽  
Author(s):  
Laurent Poupard ◽  
Isabelle Court-Fortune ◽  
Vincent Pichot ◽  
Florian Chouchou ◽  
Jean-Claude Barthélémy ◽  
...  

2008 ◽  
Vol 15 (06) ◽  
pp. 911-917
Author(s):  
VITTAYA AMORNKITBAMRUNG ◽  
ONG-ON TOPON

An infrared CO 2 laser was used for regional heating to study the heating effect on hot filament chemical vapor deposition of diamond-like carbon formation on Si (100) face substrates. The substrate surface temperature was about 450–500°C. The power of the laser called low, medium, and high raised the temperature of the substrate locally by 25, 45, and 55°C, respectively. At medium laser power, at the central laser beam region, a narrow Raman peak centered at 1438 cm-1 was detected. It can be concluded that this region has good-quality DLC. This moderate high-frequency peak corresponds to a fourfold-rotation-symmetry atom in an amorphous carbon network from the tight-binding molecular dynamics simulation of Wang and Ho.


2007 ◽  
Vol 37 (7) ◽  
pp. 1956-1967 ◽  
Author(s):  
Eric A. D’Asaro ◽  
Ren-Chieh Lien ◽  
Frank Henyey

Abstract Measurements of vertical velocity by isopycnal-following, neutrally buoyant floats deployed on the Oregon shelf during the summers of 2000 and 2001 were used to characterize internal gravity waves on the shelf using measurements of vertical velocity. The average spectrum of Wentzel–Kramers–Brillouin (WKB)-scaled vertical kinetic energy has the level predicted by the Garrett–Munk model (GM79), plus a narrow M2 tidal peak and a broad high-frequency peak extending from about 0.1N to N and rising a decade above GM79. The high-frequency peak varies in energy coherently with time across its entire bandwidth. Its energy is independent of the tidal energy. The energy in the “continuum” region between the peaks is weakly correlated with the level of the high-frequency peak energy and is independent of the tidal peak energy. The vertical velocity is not Gaussian but is highly intermittent, with a calculated kurtosis of 19. The vertical kinetic energy varies geographically. Low energy is found offshore and nearshore. The highest energy is found near a small seamount. High energy is found over the rough topography of Heceta Bank and near the shelf break. The highest energy occurs as packets of high-frequency waves, often occurring on the sharp downward phase of the M2 internal tide and called “tidal solibores.” A few isolated waves with high energy are also found. Of the 1-h periods with the highest vertical kinetic energy, 31% are tidal solibores, 8% are isolated waves, and the remainder of the periods appear unorganized. The two most energetic tidal solibores were examined in detail. As compared with the steady, propagating, two-dimensional, inviscid, internal-wave solutions to the equations of motion with no background shear [i.e., the Dubreil–Jacotin–Long (DJL) equation], all but the most energetic observed waveforms are too narrow for their height to be solitary waves. Despite the large near-N peak in vertical kinetic energy, the M2 internal tide contributes over 80% of the energy, ignoring near-inertial waves. The tidal solibores make a very small contribution, 0.5%, to the overall internal-wave energy.


Sign in / Sign up

Export Citation Format

Share Document