HydroSOS: a pilot global Hydrological Status and Outlook System integrating national to global scale hydrological services for increased resilience to hydro-climatic risks

Author(s):  
Katie Smith ◽  
Luis Roberto Silva Vara ◽  
Harry Dixon ◽  
Victoria Barlow ◽  
Alan Jenkins ◽  
...  

<p>Consistent hydrological status and outlook information across transboundary basins or regions of shared hydrological interest are not often available. Furthermore, whilst large-scale modelling capabilities are continually improving, there is an information and confidence gap between locally informed hydrological status information products and those developed globally.</p><p>HydroSOS is World Meteorological Organisation initiative that aims to increase global resilience to hydro-climatic risks through the production of hydrological status and outlooks assessments at different scales around the world. Currently in a pilot phase, HydroSOS is being developed through a collaboration between National Hydrometeorological Services, transboundary basin organisations, global modelling centres and the research community. The system will provide an appraisal of where current hydrological status is different from “normal”, as well as sub-seasonal to seasonal outlooks indicating whether this is likely to get better or worse over the coming weeks and months.</p><p>The HydroSOS programme consists of five main activity streams:</p><ol><li>Increasing the interoperability of hydrological status and outlook products through <strong>Common Technical Specifications.</strong></li> <li>Increasing national capabilities to generate hydrological status and sub-seasonal to seasonal outlook products through <strong>Guidance on Methods and Tools.</strong></li> <li>Increasing the utility of large-scale hydrological status and outlook modelling through <strong>Co-design of Global Products</strong>, with international partners working from local to global scale.</li> <li>Increasing shared production of transboundary hydrological status and outlook products through <strong>Regional Pilots</strong>, initially in South Asia and the Lake Victoria Basin.</li> <li>Integration of hydrological status and outlook products for national, regional and global users through a <strong>Demonstration Portal.</strong></li> </ol><p>This PICO contribution will present progress in the pilot project to date, including a hands-on demonstration of the web portal.</p>

2015 ◽  
Vol 15 (21) ◽  
pp. 12139-12157 ◽  
Author(s):  
J. Joutsensaari ◽  
P. Yli-Pirilä ◽  
H. Korhonen ◽  
A. Arola ◽  
J. D. Blande ◽  
...  

Abstract. Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOAs) and will be greatly influenced by increasing temperature. Global warming is predicted to not only increase emissions of reactive biogenic volatile organic compounds (BVOCs) from vegetation directly but also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOCs. Thus, climate change factors could substantially accelerate the formation of biogenic SOAs in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global-scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions respectively from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10–50 fold, resulting in 200–1000-fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global-scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10 % of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480 %) and cloud condensation nuclei concentrations (45 %). Satellite observations indicated a 2-fold increase in aerosol optical depth over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus, affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.


2019 ◽  
Vol 147 (9) ◽  
pp. 3365-3390 ◽  
Author(s):  
Beth J. Woodhams ◽  
Cathryn E. Birch ◽  
John H. Marsham ◽  
Todd P. Lane ◽  
Caroline L. Bain ◽  
...  

Abstract The Lake Victoria region in East Africa is a hot spot for intense convective storms that are responsible for the deaths of thousands of fishermen each year. The processes responsible for the initiation, development, and propagation of the storms are poorly understood and forecast skill is limited. Key processes for the life cycle of two storms are investigated using Met Office Unified Model convection-permitting simulations with 1.5 km horizontal grid spacing. The two cases are analyzed alongside a simulation of a period with no storms to assess the roles of the lake–land breeze, downslope mountain winds, prevailing large-scale winds, and moisture availability. While seasonal changes in large-scale moisture availability play a key role in storm development, the lake–land-breeze circulation is a major control on the initiation location, timing, and propagation of convection. In the dry season, opposing offshore winds form a bulge of moist air above the lake surface overnight that extends from the surface to ~1.5 km and may trigger storms in high CAPE/low CIN environments. Such a feature has not been explicitly observed or modeled in previous literature. Storms over land on the preceding day are shown to alter the local atmospheric moisture and circulation to promote storm formation over the lake. The variety of initiation processes and differing characteristics of just two storms analyzed here show that the mean diurnal cycle over Lake Victoria alone is inadequate to fully understand storm formation. Knowledge of daily changes in local-scale moisture variability and circulations are keys for skillful forecasts over the lake.


2019 ◽  
Vol 32 (7) ◽  
pp. 2109-2129 ◽  
Author(s):  
Declan L. Finney ◽  
John H. Marsham ◽  
Lawrence S. Jackson ◽  
Elizabeth J. Kendon ◽  
David P. Rowell ◽  
...  

Abstract The precipitation and diabatic heating resulting from moist convection make it a key component of the atmospheric water budget in the tropics. With convective parameterization being a known source of uncertainty in global models, convection-permitting (CP) models are increasingly being used to improve understanding of regional climate. Here, a new 10-yr CP simulation is used to study the characteristics of rainfall and atmospheric water budget for East Africa and the Lake Victoria basin. The explicit representation of convection leads to a widespread improvement in the intensities and diurnal cycle of rainfall when compared with a parameterized simulation. Differences in large-scale moisture fluxes lead to a shift in the mean rainfall pattern from the Congo to Lake Victoria basin in the CP simulation—highlighting the important connection between local changes in the representation of convection and larger-scale dynamics and rainfall. Stronger lake–land contrasts in buoyancy in the CP model lead to a stronger nocturnal land breeze over Lake Victoria, increasing evaporation and moisture flux convergence (MFC), and likely unrealistically high rainfall. However, for the mountains east of the lake, the CP model produces a diurnal rainfall cycle much more similar to satellite estimates, which is related to differences in the timing of MFC. Results here demonstrate that, while care is needed regarding lake forcings, a CP approach offers a more realistic representation of several rainfall characteristics through a more physically based realization of the atmospheric dynamics around the complex topography of East Africa.


2006 ◽  
Vol 134 (12) ◽  
pp. 3588-3609 ◽  
Author(s):  
Richard O. Anyah ◽  
Fredrick H. M. Semazzi ◽  
Lian Xie

Abstract A fully coupled regional climate, 3D lake modeling system is used to investigate the physical mechanisms associated with the multiscale variability of the Lake Victoria basin climate. To examine the relative influence of different processes on the lake basin climate, a suite of model experiments were performed by smoothing topography around the lake basin, altering lake surface characteristics, and reducing or increasing the amount of large-scale moisture advected into the lake region through the four lateral boundaries of the model domain. Simulated monthly mean rainfall over the basin is comparable to the satellite (Tropical Rainfall Measuring Mission) estimates. Peaks between midnight and early morning hours characterize the simulated diurnal variability of rainfall over the four quadrants of the lake, consistent with satellite estimates, although the simulated peaks occur a little earlier. It is evident in the simulations with smoothed topography that the upslope/downslope flow generated by the mountains east of the lake and the land–lake breeze circulations play important roles in influencing the intensity, the location of lake/land breeze fronts, and the horizontal extent of the land–lake breeze circulation, as well as lake basin precipitation. When the lake surface is replaced with marsh (water hyacinth), the late night and early morning rainfall maximum located over the western sector of the lake is dramatically reduced. Our simulations also indicate that large-scale moisture transported via the prevailing easterly trades enhances lake basin precipitation significantly. This is in contrast to the notion advanced in some of the previous studies that Lake Victoria generates its own climate (rainfall) through precipitation–evaporation–reprecipitation recycling only.


2015 ◽  
Vol 15 (7) ◽  
pp. 10853-10898 ◽  
Author(s):  
J. Joutsensaari ◽  
P. Yli-Pirilä ◽  
H. Korhonen ◽  
A. Arola ◽  
J. D. Blande ◽  
...  

Abstract. Boreal forests are a major source of climate-relevant biogenic secondary organic aerosols (SOA) and will be greatly influenced by increasing temperature. Global warming is predicted to increase emissions of reactive biogenic volatile organic compounds (BVOC) from vegetation directly, but will also induce large-scale insect outbreaks, which significantly increase emissions of reactive BVOC. Thus, climate change factors could substantially accelerate the formation of biogenic SOA in the troposphere. In this study, we have combined results from field and laboratory experiments, satellite observations and global scale modelling in order to evaluate the effects of insect herbivory and large-scale outbreaks on SOA formation and the Earth's climate. Field measurements demonstrated 11-fold and 20-fold increases in monoterpene and sesquiterpene emissions, respectively, from damaged trees during a pine sawfly (Neodiprion sertifer) outbreak in eastern Finland. Laboratory chamber experiments showed that feeding by pine weevils (Hylobius abietis) increased VOC emissions from Scots pine and Norway spruce seedlings by 10–50 fold resulting in 200–1000 fold increases in SOA masses formed via ozonolysis. The influence of insect damage on aerosol concentrations in boreal forests was studied with a global chemical transport model GLOMAP and MODIS satellite observations. Global scale modelling was performed using a 10-fold increase in monoterpene emission rates and assuming 10% of the boreal forest area was experiencing outbreak. Results showed a clear increase in total particulate mass (local max. 480%) and cloud condensation nuclei concentrations (45%). Satellite observations indicated a two-fold increase in aerosol optical depth (AOD) over western Canada's pine forests in August during a bark beetle outbreak. These results suggest that more frequent insect outbreaks in a warming climate could result in substantial increase in biogenic SOA formation in the boreal zone and, thus, affect both aerosol direct and indirect forcing of climate at regional scales. The effect of insect outbreaks on VOC emissions and SOA formation should be considered in future climate predictions.


2012 ◽  
Vol 44 (5) ◽  
pp. 917-925 ◽  
Author(s):  
Chantal Donnelly ◽  
Jörgen Rosberg ◽  
Kristina Isberg

Underpinning all hydrological simulations is an estimate of the catchment area upstream of a point of interest. Locally, the delineation of a catchment and estimation of its area is usually done using fine scale maps and local knowledge, but for large-scale hydrological modelling, particularly continental and global scale modelling, this level of detailed data analysis is not practical. For large-scale hydrological modelling, remotely sensed and hydrologically conditioned river routing networks, such as HYDRO1k and HydroSHEDS, are often used. This study evaluates the accuracy of the accumulated upstream area in each gridpoint given by the networks. This is useful for evaluating the ability of these data sets to delineate catchments of varying scale for use in hydrological models. It is shown that the higher resolution HydroSHEDS data set gives better results than the HYDRO1k data set and that accuracy decreases with decreasing basin scale. In ungauged basins, or where other local catchment area data are not available, the validation made in this study can be used to indicate the likelihood of correctly delineating catchments of different scales using these river routing networks.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


2020 ◽  
Author(s):  
Clément Beust ◽  
Erwin Franquet ◽  
Jean-Pierre Bédécarrats ◽  
Pierre Garcia ◽  
Jérôme Pouvreau ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3062
Author(s):  
Guo Zhang ◽  
Boyang Jiang ◽  
Taoyang Wang ◽  
Yuanxin Ye ◽  
Xin Li

To ensure the accuracy of large-scale optical stereo image bundle block adjustment, it is necessary to provide well-distributed ground control points (GCPs) with high accuracy. However, it is difficult to acquire control points through field measurements outside the country. Considering the high planimetric accuracy of spaceborne synthetic aperture radar (SAR) images and the high elevation accuracy of satellite-based laser altimetry data, this paper proposes an adjustment method that combines both as control sources, which can be independent from GCPs. Firstly, the SAR digital orthophoto map (DOM)-based planar control points (PCPs) acquisition is realized by multimodal matching, then the laser altimetry data are filtered to obtain laser altimetry points (LAPs), and finally the optical stereo images’ combined adjustment is conducted. The experimental results of Ziyuan-3 (ZY-3) images prove that this method can achieve an accuracy of 7 m in plane and 3 m in elevation after adjustment without relying on GCPs, which lays the technical foundation for a global-scale satellite image process.


Sign in / Sign up

Export Citation Format

Share Document