Impact of Doppler radar reflectivity and velocity data assimilation on the quality of precipitation forecasting in Belarus in different seasons

Author(s):  
Palina Zaiko ◽  
Siarhei Barodka ◽  
Aliaksandr Krasouski

<p>Heavy precipitation forecast remains one of the biggest problems in numerical weather prediction. Modern remote sensing systems allow tracking of rapidly developing convective processes and provide additional data for numerical weather models practically in real time. Assimilation of Doppler weather radar data also allows to specify the position and intensity of convective processes in atmospheric numerical models.</p><p>The primary objective of this study is to evaluate the impact of Doppler  radar reflectivity and velocity assimilation in the WRF-ARW mesoscale model for the territory of Belarus in different seasons of the year. Specifically, we focus on the short-range numerical forecasting of mesoscale convective systems passage over the territory of Belarus in 2017-2019 with assimilated radar data.</p><p>Proceeding with weather radar observations available for our cases, we first perform the necessary processing of the raw radar data to eliminate noise, reflections and other kinds of clutter. For identification of non-meteorological noise fuzzy echo classification was used. Then we use the WRF-DA (3D-Var) system to assimilate the processed radar observations from 3 Belarusian Doppler weather radar in the WRF model. Assimilating both radar reflectivity and radial velocity data in the model we aim to better represent not only the distribution of clouds and their moisture content, but also the detailed dynamical aspects of convective circulation. Finally, we analyze WRF modelling output obtained with assimilated radar data and compare it with available meteorological observations and with other model runs (including control runs with no data assimilation or with assimilation of conventional weather stations data only), paying special attention to the accuracy of precipitation forecast 12 hours in advance.</p>

Author(s):  
Yuanbo Ran ◽  
Haijiang Wang ◽  
Li Tian ◽  
Jiang Wu ◽  
Xiaohong Li

AbstractPrecipitation clouds are visible aggregates of hydrometeor in the air that floating in the atmosphere after condensation, which can be divided into stratiform cloud and convective cloud. Different precipitation clouds often accompany different precipitation processes. Accurate identification of precipitation clouds is significant for the prediction of severe precipitation processes. Traditional identification methods mostly depend on the differences of radar reflectivity distribution morphology between stratiform and convective precipitation clouds in three-dimensional space. However, all of them have a common shortcoming that the radial velocity data detected by Doppler Weather Radar has not been applied to the identification of precipitation clouds because it is insensitive to the convective movement in the vertical direction. This paper proposes a new method for precipitation clouds identification based on deep learning algorithm, which is according the distribution morphology of multiple radar data. It mainly includes three parts, which are Constant Altitude Plan Position Indicator data (CAPPI) interpolation for radar reflectivity, Radial projection of the ground horizontal wind field by using radial velocity data, and the precipitation clouds identification based on Faster-RCNN. The testing result shows that the method proposed in this paper performs better than the traditional methods in terms of precision. Moreover, this method boasts great advantages in running time and adaptive ability.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Shibo Gao ◽  
Jinzhong Min

Using radar observations, the performances of the ensemble square root filter (EnSRF) and an indirect three-dimensional variational (3DVar) data assimilation method were compared for a mesoscale convective system (MCS) that occurred in the Front Range of the Rocky Mountains, Colorado (USA). The results showed that the root mean square innovations (RMSIs) of EnSRF were lower than 3DVar for radar reflectivity and radial velocity and that the spread of EnSRF was generally consistent with its RMSIs. EnSRF substantially improved the analysis of the MCS compared with an experiment without radar data assimilation, and it produced a slight but noticeable improvement over 3DVar in terms of both coverage and intensity. Forecast results initiated from the final analysis revealed that EnSRF generally produced the best prediction of the MCS, with improved quantitative reflectivity and precipitation forecast skills. EnSRF also demonstrated better performance than 3DVar in the prediction of neighborhood probability for reflectivity at thresholds of 20 and 35 dBZ, which better matched the observed radar reflectivity in terms of both shape and extension. Additionally, the humidity, temperature, and wind fields were also improved by EnSRF; the largest error reduction was found in the water vapor field near the surface and at upper levels.


2013 ◽  
Vol 17 (8) ◽  
pp. 3095-3110 ◽  
Author(s):  
J. Liu ◽  
M. Bray ◽  
D. Han

Abstract. Mesoscale numerical weather prediction (NWP) models are gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations, especially the weather radar data, can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three-dimensional variational (3D-Var) data-assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauge observations, the radar data are assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types/combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation are evaluated by examining the rainfall temporal variations and total amounts which have direct impacts on rainfall–runoff transformation in hydrological applications. It is found that by solely assimilating radar data, the improvement of rainfall forecasts are not as obvious as assimilating meteorological data; whereas the positive effect of radar data can be seen when combined with the traditional meteorological data, which leads to the best rainfall forecasts among the five modes. To further improve the effect of radar data assimilation, limitations of the radar correction ratio developed in this study are discussed and suggestions are made on more efficient utilisation of radar data in NWP data assimilation.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1653
Author(s):  
Gabriela Czibula ◽  
Andrei Mihai ◽  
Alexandra-Ioana Albu ◽  
Istvan-Gergely Czibula ◽  
Sorin Burcea ◽  
...  

Short-term quantitative precipitation forecast is a challenging topic in meteorology, as the number of severe meteorological phenomena is increasing in most regions of the world. Weather radar data is of utmost importance to meteorologists for issuing short-term weather forecast and warnings of severe weather phenomena. We are proposing AutoNowP, a binary classification model intended for precipitation nowcasting based on weather radar reflectivity prediction. Specifically, AutoNowP uses two convolutional autoencoders, being trained on radar data collected on both stratiform and convective weather conditions for learning to predict whether the radar reflectivity values will be above or below a certain threshold. AutoNowP is intended to be a proof of concept that autoencoders are useful in distinguishing between convective and stratiform precipitation. Real radar data provided by the Romanian National Meteorological Administration and the Norwegian Meteorological Institute is used for evaluating the effectiveness of AutoNowP. Results showed that AutoNowP surpassed other binary classifiers used in the supervised learning literature in terms of probability of detection and negative predictive value, highlighting its predictive performance.


2020 ◽  
Vol 3 ◽  
pp. 6-18
Author(s):  
A.A. Alekseeva ◽  
◽  
V.M. Bukharov ◽  
E.V. Vasil’ev ◽  
V.M. Losev ◽  
...  

The results of studying the diagnosis of squalls in snowstorms based on DMRL-C Doppler weather radar data are presented. The diagnosis of squalls is performed using the algorithm developed in the Hydrometcentre of Russia for diagnosing showers based on the maximum convective velocity calculated from radar data (maximum radar reflectivity in a cloud and the cloud top height). The algorithm implies the determination of the fact of the occurrence of squalls for three speed gradations (15-19 m/s; 20-24 m/s; ≥25 m/s) and the refinement of wind speed during a squall. Keywords: diagnosis, radar data, snowstorm, squall Fig. 6. Ref. 7.


2019 ◽  
Vol 51 (3) ◽  
pp. 273 ◽  
Author(s):  
Miranti Indri Hastuti ◽  
Jaka Anugrah Ivanda Paski ◽  
Fatkhuroyan Fatkhuroyan

Data assimilation is one of method to improve initial atmospheric conditions data in numerical weather prediction. The assimilation of weather radar data that has quite extensive and tight data is considered to be able to improve the quality of weather prediction and analysis. This study aims to investigate the effect of assimilation of Doppler weather radar data in Weather Research Forecasting (WRF) numerical model for the prediction of heavy rain events in the Jabodetabek area with dates representing four seasons respectively on 20 February 2017, 3 April 2017, 13 June 2017, and 9 November 2017. For this purpose, the reflectivity (Z) and radial velocity (V) data from Plan Position Indicator (PPI) product and reflectivity (Z) data from Constant Altitude PPI (CAPPI) product were assimilated using WRFDA (WRF Data Assimilation) numerical model with 3DVar (The Three Dimensional Variational) system. The output of radar data assimilation and without assimilation of the numerical model of WRF is verified by spatial with GSMaP data and by point with precipitation observation data. In general, WRF radar assimilation provides a better simulation of spatial and point rain events compared to the WRF model without assimilation which is improvements of rain prediction from WRF radar data assimilation would be more visible in areas close to radar sources and not echo-blocked from fixed objects, and more visible during the rainy season


2020 ◽  
Author(s):  
Yuanbo Ran ◽  
Haijiang Wang ◽  
Li Tian ◽  
Jiang Wu ◽  
Xiaohong Li

Abstract Precipitation clouds are visible aggregates of hydrometeor in the air that floating in the atmos-phere after condensation, which can be divided into stratiform cloud and convective cloud. Different precipitation clouds often accompany different precipitation processes. Accurate identification of precipitation clouds is significant for the prediction of severe precipitation processes. Traditional identification methods mostly depend on the differences of radar reflectivity distribution morphology between stratiform and convective precipitation clouds in three-dimensional space. However, all of them have a common shortcoming that the radial velocity data detected by Doppler Weather Radar has not been applied to the identification of precipitation clouds because it is insensitive to the convective movement in the vertical direction. This paper proposes a new method for precipitation clouds identification based on deep learning algorithm, which is according the distribution morphology of multiple radar data. It mainly includes three parts, which are Constant Altitude Plan Position Indicator data (CAPPI) inversion for radar reflectivity, Radial projection of the ground horizontal wind field by using radial velocity data, and the precipitation clouds identification based on Faster-RCNN. The testing result shows that the method proposed in this paper performs better than typical existing algorithms in terms of accuracy rate. Moreover, this method boasts great advantages in running time and adaptive ability.


2012 ◽  
Vol 9 (9) ◽  
pp. 10323-10364
Author(s):  
J. Liu ◽  
M. Bray ◽  
D. Han

Abstract. Mesoscale NWP model is gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations especially the weather radar data can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in Southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three dimensional variational (3D-Var) data assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauges, the radar data is assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types or combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation is evaluated by examining the rainfall cumulative curves and the rainfall totals which have direct impact on rainfall-runoff transformation in hydrological applications. It is found that by solely assimilating radar data, the improvement of rainfall forecasts are not as obvious as assimilating meteorological data; whereas the positive effect of radar data can be seen when combined with the traditional meteorological data, which leads to the best rainfall forecasts among the five modes. To further improve the effect of radar data assimilation, limitations of the radar correction ratio developed in this study is discussed and suggestions are made on more efficient utilisation of radar data in NWP assimilation.


Sign in / Sign up

Export Citation Format

Share Document