The impact of SST front on the surface wind in the southern Indian Ocean
<p><span>&#160;</span>Using 28-year satellite-borne Special Sensor Microwave Imager observations, features of high-wind frequency (HWF) over</p><p>the southern Indian Ocean are investigated. Climatology maps show that high winds occur frequently during austral winter,</p><p>located in the open ocean south of Polar Front in subpolar region, warm flank of the Subantarctic Front between 55<sup>o</sup>E-78<sup>o</sup>E,&#160;</p><p>and south of Cape Agulhas, where westerly wind prevails. The strong instability of marine atmospheric boundary layer</p><p>accompanied by increased sensible and latent heat fluxes on the warmer flank acts to enhance the vertical momentum mixing,</p><p>thus accelerate the surface winds. Effects of sea surface temperature (SST) front can even reach the entire troposphere</p><p>by deep convection. HWF also shows distinct interannual variability, which is associated with the Southern Annual Mode</p><p>(SAM). During positive phase of the SAM, HWF has positive anomalies over the open ocean south of Polar Front, while</p><p>has negative anomalies north of the SST front. A phase shift of HWF happened around 2001, which is likely related to the</p><p>reduction of storm tracks and poleward shift of westerly winds in the Southern Hemisphere.</p>