Factors controlling the interaction between tectonics and surface processes in convergent orogens: insight from analogue and numerical models

Author(s):  
Riccardo Reitano ◽  
Claudio Faccenna ◽  
Francesca Funiciello ◽  
Fabio Corbi ◽  
Sean Willett

<p>Convergent orogens are the best places on Earth for studying the interaction between surface processes and tectonics. They display the highest surface uplift rates and in turn are more likely affected by erosion. The balance between tectonics and erosion is responsible for many aspects in the evolution of a mountain belt. Despite the growth of analysis techniques, our understanding is still limited by the impossibility to observe these processes through their entire evolution. In particular, understanding how single parameters affect the system is necessary to unravel the nature of these multiple-interrelated processes.</p><p>Here we propose a new series of analogue models reproducing a simplified and scaled natural convergent orogenic system, to investigate the evolution of landscapes in which both tectonics and erosion/sedimentation are present. The growth of the orogenic wedge is driven by a rigid plate pushing the rear of the model. Deformed brittle granular material is a mixture of silica powder, glass microbeads and PVC powder. This mixture allows for the observation of both deforming structures and geomorphic features. Erosion is simulated by a water sprinkler system, providing a fine mist as precipitation which collects into simulated rivers, shaping the landscape. The model therefore allows observing the interaction between tectonics and surface processes. We analyze the model evolution monitoring oblique-view with cameras and top-view with a laser scanner. The latter is useful for measuring the mass balance between input fluxes (tectonics) and output fluxes (erosion) and in fulfilling a proper parametric study on the cause-effect relationship. The effect of different parameters on landscape evolution (e.g., precipitation rate, convergence velocity) is investigated systematically.</p><p>Our preliminary results analyze the relationship between single parameters and their effect on the models, allowing a proper definition of the role played in the landscape evolution. We also set up a benchmark with numerical models using DACI3ELVIS code in the same tectonic setting.</p>

2021 ◽  
Author(s):  
Harrison K. Martin ◽  
Douglas A. Edmonds

Abstract. River avulsions are an important mechanism by which sediment is routed and emplaced in foreland basins. However, because avulsions occur infrequently, we lack observational data that might inform where, when, and why avulsions occur and these questions are instead often investigated by rule-based numerical models. These models have historically simplified or neglected the effects of abandoned channels on avulsion dynamics, even though fluvial megafans in foreland basins are characteristically covered in abandoned channels. Here, we investigate the pervasiveness of abandoned channels on modern fluvial megafan surfaces. Then, we present a physically based cellular model that parameterizes interactions between a single avulsing river and abandoned channels in a foreland basin setting. We investigate how abandoned channels affect avulsion set-up, pathfinding, and landscape evolution. We demonstrate and discuss how the processes of abandoned channel inheritance and transient knickpoint propagation post-avulsion serve to shortcut the time necessary to set-up successive avulsions. Then, we address the idea that abandoned channels can both repel and attract future pathfinding flows under different conditions. By measuring the distance between the mountain-front and each avulsion over long (106 to 107 years) timescales, we show that increasing abandoned channel repulsion serves to push avulsions farther from the mountain-front, while increasing attraction pulls avulsions proximally. Abandoned channels do not persist forever, and we test possible channel healing scenarios (deposition-only, erosion-only, and far-field directed) and show that only the final scenario achieves dynamic equilibrium without completely filling accommodation space. We also observe megafan growth occurring via ~O:105 year lobe switching, but only in our runs that employ deposition-only or erosion-only healing modes. Finally, we highlight opportunities for future field work and remote sensing efforts to inform our understanding of the role that floodplain topography, including abandoned channels, plays on avulsion dynamics.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


2021 ◽  
Author(s):  
Murat Zeybek ◽  
Lei Jiang ◽  
Hadrien Dumont

Abstract The radius of investigation (ROI) of pressure transient analyses has been traditionally assessed using analytical formulations with basic reservoir parameters for homogenous systems. Numerous studies aimed to improve ROI formulations to incorporate all reservoir and testing parameters such as gauge resolution and rate for more accurate ROI assessments. However, new generation wireline formation testers aim to improve deep transient tests with significant developments in gauge resolution and increasing rate. Challenges still remain in heterogeneous formations such as shaly sands and carbonate reservoirs. In this study, detailed conceptual high-resolution numerical models are set up, including comprehensive reservoir and measurement parameters, to investigate more realistic ROI assessments in layered heterogeneous systems without and with hydraulic communication. Several conceptual examples are presented in layered systems with permeability contrasts. In addition, deviation from infinite-acting radial flow (IAFR) and pressure propagation in highly heterogeneous layered systems are investigated to detect the presence of geological features, including closed boundary systems and the presence of a fault in the proximity of wellbore.


2017 ◽  
Vol 8 (2) ◽  
pp. 178-182 ◽  
Author(s):  
F. H. S. Karp ◽  
A. F. Colaço ◽  
R. G. Trevisan ◽  
J. P. Molin

LiDAR technology is one option to collect spatial data about canopy geometry in many crops. However, the method of data acquisition includes many errors related to the LiDAR sensor, the GNSS receiver and the data acquisition set up. Therefore, the objective of this study was to evaluate the errors involved in the data acquisition from a mobile terrestrial laser scanner (MTLS). Regular shaped objects were scanned with a developed MTLS in two different tests: i) with the system mounted on a vehicle and ii) with the system mounted on a platform running over a rail. The errors of area estimation varied between 0.001 and 0.071 m2 for the circle, square and triangle objects. The errors on volume estimations were between 0.0003 and 0.0017 m3, for cylinders and truncated cone.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lin Chen

The continental lower crust is an important composition- and strength-jump layer in the lithosphere. Laboratory studies show its strength varies greatly due to a wide variety of composition. How the lower crust rheology influences the collisional orogeny remains poorly understood. Here I investigate the role of the lower crust rheology in the evolution of an orogen subject to horizontal shortening using 2D numerical models. A range of lower crustal flow laws from laboratory studies are tested to examine their effects on the styles of the accommodation of convergence. Three distinct styles are observed: 1) downwelling and subsequent delamination of orogen lithosphere mantle as a coherent slab; 2) localized thickening of orogen lithosphere; and 3) underthrusting of peripheral strong lithospheres below the orogen. Delamination occurs only if the orogen lower crust rheology is represented by the weak end-member of flow laws. The delamination is followed by partial melting of the lower crust and punctuated surface uplift confined to the orogen central region. For a moderately or extremely strong orogen lower crust, topography highs only develop on both sides of the orogen. In the Tibetan plateau, the crust has been doubly thickened but the underlying mantle lithosphere is highly heterogeneous. I suggest that the subvertical high-velocity mantle structures, as observed in southern and western Tibet, may exemplify localized delamination of the mantle lithosphere due to rheological weakening of the Tibetan lower crust.


Author(s):  
J.-F. Hullo

We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial asbuilt mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory for identifying different types of errors or a lack of robustness of the system as well as <i>in fine</i> documenting the quality of the registration.


2015 ◽  
Vol 58 (2) ◽  
Author(s):  
Manuela Volpe ◽  
Simone Atzori ◽  
Antonio Piersanti ◽  
Daniele Melini

<p>We present a Finite Element inverse analysis of the static deformation field for the M<sub>w</sub>= 6.3, 2009 L’Aquila earthquake, in order to infer the rupture slip distribution on the fault plane. An univocal solution for the rupture slip distribution has not been reached yet with negative impact for reliable hazard scenarios in a densely populated area. In this study, Finite Element computed Green’s functions were implemented in a linear joint inversion scheme of geodetic (GPS and InSAR) and seismological (strong motion) coseismic deformation data. In order to fully exploit the informative power of our dense dataset and to honor the complexities of the real Earth, we implemented an optimized source model, represented by a fault plane subdivided in variable size patches, embedded in a high-resolution realistic three-dimensional model of the Apenninic seismo-tectonic setting, accounting for topographic reliefs and rheological heterogeneities deduced from local tomography. We infer that the investigated inversion domain contains two minima configurations in the solution space, i.e. a single- and a double-patch slip distribution, which are almost equivalent, so that the available datasets and numerical models are not able to univocally discriminate between them. Nevertheless our findings suggest that a two high-slip patch pattern is slightly favoured.</p>


Author(s):  
Joaquín Moris ◽  
Patricio Catalán ◽  
Rodrigo Cienfuegos

Wave breaking is one of the main forcing mechanisms in coastal hydrodynamics, driving mean water levels and currents. Understanding its behavior is key in the goal of improving our comprehension of coastal morphodynamics variations. One way to improve our understanding is through the use of numerical models, such as phase-resolving numerical models based on the Boussinesq equations (Kirby, 2016), which are modified to include breaking by the inclusion of a breaking criteria and a dissipation mechanism. Since there is not a universal law capable of characterizing the wave breaking, the existing models must be calibrated. Traditionally, this is done by adjusting wave height profiles and other free surface statistical parameters without explicitly considering the time-space location and duration of the breaking process. Consequently, it is possible to calibrate a model that accurately represents wave elevation statistics parameters, such as wave height and wave set-up; however, it might not necessarily represent the breaking location-duration and therefore, the forcing.


Sign in / Sign up

Export Citation Format

Share Document