scholarly journals A NEW HYBRID APPROACH IN THE CALIBRATION OF BOUSSINESQ-TYPE WAVE BREAKING MODELS

Author(s):  
Joaquín Moris ◽  
Patricio Catalán ◽  
Rodrigo Cienfuegos

Wave breaking is one of the main forcing mechanisms in coastal hydrodynamics, driving mean water levels and currents. Understanding its behavior is key in the goal of improving our comprehension of coastal morphodynamics variations. One way to improve our understanding is through the use of numerical models, such as phase-resolving numerical models based on the Boussinesq equations (Kirby, 2016), which are modified to include breaking by the inclusion of a breaking criteria and a dissipation mechanism. Since there is not a universal law capable of characterizing the wave breaking, the existing models must be calibrated. Traditionally, this is done by adjusting wave height profiles and other free surface statistical parameters without explicitly considering the time-space location and duration of the breaking process. Consequently, it is possible to calibrate a model that accurately represents wave elevation statistics parameters, such as wave height and wave set-up; however, it might not necessarily represent the breaking location-duration and therefore, the forcing.

2019 ◽  
Vol 19 (10) ◽  
pp. 2183-2205 ◽  
Author(s):  
Bruno Castelle ◽  
Tim Scott ◽  
Rob Brander ◽  
Jak McCarroll ◽  
Arthur Robinet ◽  
...  

Abstract. The two primary causes of surf zone injuries (SZIs) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. SZIs also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on SZIs along the high-energy meso–macro-tidal surf beach coast of southwestern France. A total of 2523 SZIs recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All SZIs occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related SZIs and weakest for surfing-related SZIs, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related SZIs occur during shore-normal incident waves with average to below-average wave height (significant wave height, Hs = 0.75–1.5 m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with Hs >1.25 m and mean wave periods longer than 5 s. Additional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining SZI occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to SZI patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related SZIs, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Author(s):  
Y. F. Zhang ◽  
A. Y. C. Nee ◽  
J. Y. H. Fuh

Abstract One of the most difficult tasks in automated process planning is the determination of operation sequencing. This paper describes a hybrid approach for identifying the optimal operation sequence of machining prismatic parts on a three-axis milling machining centre. In the proposed methodology, the operation sequencing is carried out in two levels of planning: set-up planning and operation planning. Various constraints on the precedence relationships between features are identified and rules and heuristics are created. Based on the precedence relationships between features, an optimization method is developed to find the optimal plan(s) with minimum number of set-ups in which the conflict between the feature precedence relationships and set-up sequence is avoided. For each set-up, an optimal feature machining sequence with minimum number of tool changes is also determined using a developed algorithm. The proposed system is still under development and the hybrid approach is partially implemented. An example is provided to demonstrate this approach.


2021 ◽  
Author(s):  
Murat Zeybek ◽  
Lei Jiang ◽  
Hadrien Dumont

Abstract The radius of investigation (ROI) of pressure transient analyses has been traditionally assessed using analytical formulations with basic reservoir parameters for homogenous systems. Numerous studies aimed to improve ROI formulations to incorporate all reservoir and testing parameters such as gauge resolution and rate for more accurate ROI assessments. However, new generation wireline formation testers aim to improve deep transient tests with significant developments in gauge resolution and increasing rate. Challenges still remain in heterogeneous formations such as shaly sands and carbonate reservoirs. In this study, detailed conceptual high-resolution numerical models are set up, including comprehensive reservoir and measurement parameters, to investigate more realistic ROI assessments in layered heterogeneous systems without and with hydraulic communication. Several conceptual examples are presented in layered systems with permeability contrasts. In addition, deviation from infinite-acting radial flow (IAFR) and pressure propagation in highly heterogeneous layered systems are investigated to detect the presence of geological features, including closed boundary systems and the presence of a fault in the proximity of wellbore.


2010 ◽  
Vol 18 (4) ◽  
pp. 30-40 ◽  
Author(s):  
M. Tegelhoffová

Analysis of the development of a hydrological balance for future decades in the Senianska depression in the Eastern Slovak lowlandThe goal of the article was to analyze the hydrological balance for future decades in a pilot area in the Eastern Slovak lowland. The aim was to set up the physically-based Mike SHE hydrological model for the modeling hydrological balance in the selected wetland ecosystem in the Eastern Slovak Lowland. The pilot area - the Senianska depression is located near the village of Senne, between the Laborec and Uh Rivers. Specifically, it is a traditional landscape of meadows, marshes, cultivated soil, small water control structures and forests. To get a complete model set up for simulating elements of the hydrologic balance in the pilot area, it was necessary to devise a model for a larger area, which includes the pilot area - the Senianska depression. Therefore, both the Mike SHE model was set up for the Laborec River basin (a model domain of 500 × 500 m) and the Čierna voda River basin (a model domain of 100 × 100 m), for the simulation period of 1981-2007, is order to get the boundary conditions (overland flow depth, water levels, discharges and groundwater table) for the model of the pilot area. The Mike SHE model constructed for the pilot area - the Senianska depression (a model domain of 1 × 1 m) -was used to simulate the elements of the hydrological balance for the existing conditions during the simulation period of 1983-2007 and for climate scenarios for the simulation period of 1983-2100. The results of the simulated elements of the hydrological balance for the existing conditions were used for a comparison of the evolution of the hydrologic conditions in the past, for identifying wet and flooded areas and for identifying the spatial distribution of the actual evapotranspiration in the pilot area. The built-up model with setting values was used for modeling the hydrological balance in changed conditions - climate change.


2017 ◽  
Author(s):  
Samiksha S. Volvaiker ◽  
Ponnumony Vethamony ◽  
Prasad K. Bhaskaran ◽  
Premanand Pednekar ◽  
MHamsa Jishad ◽  
...  

Abstract. Coastal regions of India are prone to sea level rise, cyclones, storm surges and human induced activities, resulting in flood, erosion, and inundation. The primary aim of the study is to estimate wave attenuation by mangrove vegetation using SWAN model in standalone mode, as well as SWAN nested with WW3 model for the Mumbai coastal region. To substantiate the model results, wave measurements were carried out during 5–8 August 2015 at 3 locations in a transect normal to the coast using surface mounted pressure level sensors under spring tide conditions. The measured data presents wave height attenuation of the order of 52 %. The study shows a linear relationship between wave height attenuation and gradual changes in water level in the nearshore region, in phase with the tides. Model set-up and sensitivity analyses were conducted to understand the model performance to vegetation parameters. It was observed that wave attenuation increased with an increase in drag coefficient (Cd), vegetation density, and stem diameter. For a typical set-up for Mumbai coastal region having vegetation density of 0.175 per m2, stem diameter of 0.3 m and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation, ranging from 49 to 55 %, which matches well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area as well as spectral changes. This study has the potential of improving the quality of wave prediction in vegetation areas, especially during monsoon season and extreme weather events.


Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 490
Author(s):  
Maria Garcia-Rios ◽  
Philippe Gouze

The risk of CO2 leakage from damaged wellbore is identified as a critical issue for the feasibility and environmental acceptance of CO2 underground storage. For instance, Portland cement can be altered if flow of CO2-rich water occurs in hydraulic discontinuities such as cement-tubing or cement-caprock interfaces. In this case, the raw cement matrix is altered by diffusion of the solutes. This fact leads to the formation of distinctive alteration fronts indicating the dissolution of portlandite, the formation of a carbonate-rich layer and the decalcification of the calcium silicate hydrate, controlled by the interplay between the reaction kinetics, the diffusion-controlled renewing of the reactants and products, and the changes in the diffusion properties caused by the changes in porosity induced by the dissolution and precipitation mechanisms. In principle, these mass transfers can be easily simulated using diffusion-reaction numerical models. However, the large uncertainties of the parameters characterizing the reaction rates (mainly the kinetic and thermodynamic coefficients and the evolving reactive surface area) and of the porosity-dependent diffusion properties prevent making reliable predictions required for risk assessment. In this paper, we present the results of a set of experiments consisting in the alteration of a holed disk of class-G cement in contact with a CO2-rich brine at reservoir conditions (P = 12 MPa and T = 60 °C) for various durations. This new experimental protocol allows producing time-resolved data for both the spatially distributed mass transfers inside the cement body and the total mass transfers inferred from the boundary conditions mass balance. The experimental results are used to study the effect of the fluid salinity and the pCO2 on the overall reaction efficiency. Experiments at high salinity triggers more portlandite dissolution, thinner carbonate layers, and larger alteration areas than those at low salinity. These features are accompanied with different spatial distribution of the alteration layers resulting from a complex interplay between salinity-controlled dissolution and precipitation mechanisms. Conversely, the effect of the pCO2 is more intuitive: Increasing pCO2 results in increasing the overall alteration rate without modifying the relative distribution of the reaction fronts.


2021 ◽  
Vol 9 (4) ◽  
pp. 110-126
Author(s):  
Wafa Benaatou ◽  
Adnane Latif ◽  
Vicent Pla

A heterogeneous wireless network needs to maintain seamless mobility and service continuity; for this reason, we have proposed an approach based on the combination of particle swarm optimization (PSO) and an adaptive neuro-fuzzy inference system (ANFIS) to forecast a handover during a movement of a mobile terminal from a serving base station to target base station. Additionally, the handover decision is made by considering several parameters, such as peak data rate, latency, packet loss, and power consumption, to select the best network for handover from an LTE to an LTE-A network. The performance efficiency of the new hybrid approach is determined by computing different statistical parameters, such as root mean square error (RMSE), coefficient of determination (R2), mean square error (MSE), and error standard deviation (StD). The execution of the proposed approach has been performed using MATLAB software. The simulation results show that the hybrid PSO-ANFIS model has better performance than other approaches in terms of prediction accuracy and reduction of handover latency and the power consumption in the network.  


2018 ◽  
Vol 2 (4) ◽  
pp. 224
Author(s):  
WI Wan Nasruddin ◽  
ZA Nor Hidayah ◽  
A Nazri ◽  
WI Wan Azzlan ◽  
I Ruwaida ◽  
...  

In December 2014, Malaysia had suffered nationwide floods after unprecedented monsoon rains overwhelmed several parts of the country. The East Coast areas of Malaysia were especially badly affected, specifically for the state of Kelantan, whereby a total of 170,000 victims were evacuated to the evacuation centres. This was the worst flood in the last 40 years and has been referred to by the locals as ‘Bah Kuning’. As a tertiary centre for the state of Kelantan with a total number of hospital beds of 937, HRPZ II was also badly compromised during this time. The electricity supply to the main hospital building was shut-down during this period and the hospital had managed to maintain its operations hUP_(ÛT_e power from a generator which had faced the risk of being shut down if the water levels had increased further. These issues might have caused a worse impact viaa possible loss of electrical and oxygen supply and non-functional life support systems. In relation to this flood disaster, the Anaesthesiology and Intensive Care Unit of HRPZ II would like to share the experiences of handling ventilated and critically ill-patients for evacuation during the massive floods in 2014 from the ICU of Hospital Raja Perempuan Zainab II to “an open stage with no facilities”. During this time, we had a total of 19 patients in our 21-bedded Intensive Care Unit. The challenge was the need to evacuate all the critically ill patients and to set-up a new ICU in a safer place immediately at the time.International Journal of Human and Health Sciences Vol. 02 No. 04 October’18. Page : 224-227


2020 ◽  
Author(s):  
M. Natália Dias Soeiro Cordeiro ◽  
Amit Kumar Halder

Abstract Quantitative structure activity relationships (QSAR) modelling is a well-known computational tool, often used in a wide variety of applications. Yet one of the major drawbacks of conventional QSAR modelling tools is that models are set up based on a limited number of experimental and/or theoretical conditions. To overcome this, the so-called multitasking or multi-target QSAR (mt-QSAR) approaches have emerged as new computational tools able to integrate diverse chemical and biological data into a single model equation, thus extending and improving the reliability of this type of modelling. We have developed QSAR-Co-X, an open source python−based toolkit (available to download at https://github.com/ncordeirfcup/QSAR-Co-X) for supporting mt-QSAR modelling following the Box-Jenkins moving average approach. The new toolkit embodies several functionalities for dataset selection and curation plus computation of descriptors, for setting up linear and non-linear models, as well as for a comprehensive results analysis. The workflow within this toolkit is guided by a cohort of multiple statistical parameters along with graphical outputs onwards assessing both the predictivity and the robustness of the derived mt-QSAR models. To monitor and demonstrate the functionalities of the designed toolkit, three case-studies pertaining to previously reported datasets are examined here. We believe that this new toolkit, along with our previously launched QSAR-Co code, will significantly contribute to make mt-QSAR modelling widely and routinely applicable.


Sign in / Sign up

Export Citation Format

Share Document