IGS RTS for real-time global ionospheric total electron content modeling: Method and Applications

Author(s):  
Ningbo Wang ◽  
Zishen Li ◽  
Liang Wang

<p>To enable GNSS applications with low or no time latency, real-time services (RTS) of the International GNSS Services (IGS) has been launched since 2013. The IGS RTS provides real-time data streams with latencies of less than few seconds, containing multi-frequency and multi-constellation GNSS measurements from a global network of high-quality GNSS receivers, which provides the opportunity to reconstruct global ionospheric models in real-time mode. For the computation of real-time global ionospheric maps (RT-GIM), a 2-day predicted global ionospheric model is introduced along with real-time slant ionospheric delays extracted from real-time IGS global stations. GPS and GLONASS L1+L2, BeiDou B1+B2 and Galileo E1+E5a signals with a sampling rate of 1 Hz are used to extract slant TEC (STEC) estimates. Spherical harmonic expansion up to degree and order 15 is employed for global vertical TEC (VTEC) modeling by combining the observed and predicted ionospheric data in real-time mode. Real-time ionospheric State Space Representation (SSR) corrections are then distributed in RTCM 1264 message (123.56.176.228:2101/CAS05) aside from the generation of RT-GIM in IONEX v1.0 format (available at ftp://ftp.gipp.org.cn/product/ionex/). The quality of CAS RT-GIMs is assessed during an 18-month period starting from August 2017, by comparison with GPS differential slant TECs at the selected IGS stations over continental areas, Jason-3 VTECs over the oceans and IGS combined final GIMs on a global scale, respectively. Results show that CAS’s RT-GIM products exhibit a relative error of 13.9%, which is only approximately 1-2% worse than the final ones during the test period. Additionally, the application of RT-GIM on the single-frequency precise point positioning (PPP) of smartphones is also presented.</p>

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


2020 ◽  
Vol 12 (7) ◽  
pp. 1198 ◽  
Author(s):  
Andreas Goss ◽  
Michael Schmidt ◽  
Eren Erdogan ◽  
Florian Seitz

The ionosphere is one of the largest error sources in GNSS (Global Navigation Satellite Systems) applications and can cause up to several meters of error in positioning. Especially for single-frequency users, who cannot correct the ionospheric delay, the information about the state of the ionosphere is mandatory. Dual- and multi-frequency GNSS users, on the other hand, can correct the ionospheric effect on their observations by linear combination. However, real-time applications such as autonomous driving or precision farming, require external high accuracy corrections for fast convergence. Mostly, this external information is given in terms of grids or coefficients of the vertical total electron content (VTEC). Globally distributed GNSS stations of different networks, such as the network of the International GNSS Services (IGS), provide a large number of multi-frequency observations which can be used to determine the state of the ionosphere. These data are used to generate Global Ionosphere Maps (GIM). Due to the inhomogeneous global distribution of GNSS real-time stations and especially due to the large data gaps over oceanic areas, the global VTEC models are usually limited in their spatial and spectral resolution. Most of the GIMs are mathematically based on globally defined radial basis functions, i.e., spherical harmonics (SH), with a maximum degree of 15 and provided with a spatial resolution of 2.5 ° × 5 ° in latitude and longitude, respectively. Regional GNSS networks, however, offer dense clusters of observations, which can be used to generate regional VTEC solutions with a higher spectral resolution. In this study, we introduce a two-step model (TSM) comprising a global model as the first step and a regional model as the second step. We apply polynomial and trigonometric B-spline functions to represent the global VTEC. Polynomial B-splines are used for modelling the finer structures of VTEC within selected regions, i.e., the densification areas. The TSM provides both, a global and a regional VTEC map at the same time. In order to study the performance, we apply the developed approach to hourly data of the global IGS network as well as the EUREF network of the European region for St. Patrick storm in March 2015. For the assessment of the generated maps, we use the dSTEC analysis and compare both maps with different global and regional products from the IGS Ionosphere Associated Analysis Centers, e.g., the global product from CODE (Berne, Switzerland) and from UPC (Barcelona, Spain), as well as the regional maps from ROB (Brussels, Belgium). The assessment shows a significant improvement of the regional VTEC representation in the form of the generated TSM maps. Among all other products used for comparison, the developed regional one is of the highest accuracy within the selected time span. Since the numerical tests are performed using hourly data with a latency of one to two hours, the presented procedure is seen as an intermediate step for the generation of high precision regional real-time corrections for modern applications.


2020 ◽  
Vol 12 (20) ◽  
pp. 3354
Author(s):  
Yang Wang ◽  
Yibin Yao ◽  
Liang Zhang ◽  
Mingshan Fang

Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michela Ravanelli ◽  
Giovanni Occhipinti ◽  
Giorgio Savastano ◽  
Attila Komjathy ◽  
Esayas B. Shume ◽  
...  

AbstractGlobal Navigation Satellite System (GNSS) is used in seismology to study the ground displacements as well as to monitor the ionospheric total electron content (TEC) perturbations following seismic events. The aim of this work is to combine these two observations in one real-time method based on the Total Variometric Approach (TVA) to include the GNSS real-time data stream in future warning systems and tsunami genesis estimation observing both, ground motion and TEC. Our TVA couples together the Variometric Approach for Displacement Analysis Stand-alone Engine (VADASE) with the Variometric Approach for Real-Time Ionosphere Observation (VARION) algorithms. We apply the TVA to the Mw 8.3 Illapel earthquake, that occurred in Chile on September 16, 2015, and we demonstrate the coherence of the earthquake ground shaking and the TEC perturbation by using the same GNSS data stream in a real-time scenario. Nominally, we also highlight a stronger kinetic energy released in the north of the epicenter and visible in both, the ground motion and the TEC perturbation detect at 30 s and around 9.5 min after the rupture respectively. The high spatial resolution of ionospheric TEC measurement seems to match with the extent of the seismic source. The GNSS data stream by TVA of both the ground and ionospheric measurement opens today new perspectives to real-time warning systems for tsunami genesis estimation.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 691
Author(s):  
Haris Haralambous ◽  
Theodoros Leontiou ◽  
Vasilis Petrou ◽  
Arun Kumar Singh ◽  
Marios Charalambides ◽  
...  

The objective of this article is to present a concept for single-frequency Global Navigation Satellite System (GNSS) positioning local ionospheric mitigation over a certain area. This concept is based on input parameters driving the NeQuick-G algorithm (the ionospheric single-frequency GNSS correction algorithm adopted by Galileo GNSS system), estimated on a local as opposed to a global scale, from ionospheric characteristics measured by a digital ionosonde and a collocated dual-frequency Total Electron Content (TEC) monitor. This approach facilitates the local adjustment of Committee Consultative for Ionospheric Radiowave propagation (CCIR) files and the Az ionization level, which control the ionospheric electron density profile in NeQuick-G, therefore enabling better estimation of positioning errors under quiet geomagnetic conditions. This novel concept for local ionospheric positioning error mitigation may be adopted at any location where ionospheric characteristics foF2 and M(3000)F2 can be measured, as a means to enhance the accuracy of single-frequency positioning applications based on the NeQuick-G algorithm.


2021 ◽  
Author(s):  
Andreas Goss ◽  
Manuel Hernández-Pajares ◽  
Michael Schmidt ◽  
Eren Erdogan

<p>The ionospheric signal delay is one of the largest error sources in GNSS applications and may cause in case of a single-frequency receiver a positioning error of up to several meters. To avoid such an inaccuracy some of the Ionosphere Associated Analysis Centers (IAAC) of the International GNSS Service (IGS) provide the user the Vertical Total Electron Content (VTEC) as Real-Time Global Ionosphere Maps (RT-GIM) via streaming formats. Currently, the only data format used for the dissemination of these ionospheric corrections is based on the State Space Representation (SSR) message and the RTCM standards.</p><p>Mathematically most of the RT-GIMs are based on modeling VTEC as series expansions in spherical harmonics (SH) up to a highest degree of n = 15 which corresponds to a spatial resolution of 12° in latitude and longitude and is therefore, too low for modern GNSS applications such as autonomous driving. However, the SSR VTEC message allows the dissemination of SH coefficients only up to a maximum degree of n = 16.</p><p>To avoid the drawbacks of expanding VTEC in SHs other approaches such as a voxel representation or a B-spline series expansion have been proven to be appropriate candidates for global and regional modelling with an enhanced resolution. In order to provide in these cases the significant model parameters to the user, the application of the SSR VTEC message requires a transformation of the model parameters into SH coefficients. In this contribution a methodology will be presented which describes a fast transformation of the B-spline approach into a SH representation with high accuracy by minimizing the information loss.</p><p>To test the method, a high-resolution VTEC GIM modeled as a series expansion in B-splines is transformed into SH representations of different highest degree values; the results are validated via dSTEC analysis as well as via an example of single frequency positioning and show a significantly improved accuracy compared to the IGS GIMs.</p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sumitra Iyer ◽  
Alka Mahajan

Abstract The ionospheric total electron content (TEC) severely impacts the positional accuracy of a single frequency Global Positioning System (GPS) receiver at the equatorial latitudes. The ionosphere causes a frequency-dependent group delay in the GPS-ranging signals, which reduces the receiver’s accuracy. Further, the variations in TEC due to various space weather phenomena make the ionosphere’s behaviour nonhomogeneous and complex. Hence, developing an accurate forecast model that can track the dynamic behaviour of the ionosphere remains a challenge. However, advances in emerging data-driven algorithms have been found helpful in tracking non-stationary behavior in TEC. These models help forecast the delays in advance. The multivariate Vector Autoregression model (VAR) predicts the Ionospheric TEC in the proposed model. The prediction model uses input data compiled in real-time from the lag values of incoming TEC data and features extracted from TEC. The TEC is predicted in real-time and tested for different prediction intervals. The metrics – Mean Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used for testing and validating the accuracy of the model statistically. Testing the predicted output accuracy is also done with the dynamic time warping (DTW) algorithm by comparing it with the actual value obtained from the dual-frequency receiver. The model is tested for storm days of the year 2015 for Bangalore and Hyderabad stations and found to be reliable and accurate. A prediction interval of twenty-minute shows the highest accuracy with an error within 10 TECU for all the storm days.


Sign in / Sign up

Export Citation Format

Share Document