Monitoring submerged riverine macroplastics using echo sounding

Author(s):  
Sophie Broere ◽  
Tim van Emmerik ◽  
Daniel González-Fernández ◽  
Willem Luxemburg ◽  
Andrés Cózar ◽  
...  

<p>Riverine plastics cause severe global problems, regarding the risk for human health and environmental damage. The major part of the plastic waste that ends up in the oceans is transported via rivers. However, estimations of global quantities of plastics entering the oceans are associated with great uncertainties due to methodological difficulties to accurately quantify land-based plastic fluxes into the ocean. Yet, there are no standard methods to determine quantities of plastics in rivers. For the sake of reducing the amount of plastic waste in the natural environment, information on plastic fluxes from rivers to seas is needed. Focussing on monitoring of the plastic litter that is transported by rivers is useful because measures can easier be implemented in rivers than in seas. Moreover, consistent measuring techniques are crucial to optimise prevention-and mitigation strategies, especially in countries with high expected river plastic emissions.</p><p>Additionally, based on plastic characteristics and turbulent river flow conditions, a considerable portion of the riverine litter can also be transported underneath the surface in the water column. Current monitoring methods regarding macro plastics are labour intensive and do not provide continuous measurements for submerged riverine plastics. Besides, most research done focussed on floating macro litter, instead of submerged plastics. The aim of this research was to find a standard method, applicable in different river systems, for detecting submerged macro plastics.</p><p>With the use of the Deeper Chirp+ fishfinder, several tests were conducted both in the Guadalete river basin in southern Spain and in the lab at the TU Delft. Spanish, and in general European rivers are estimated to transport two to three orders of magnitude below rivers in Asia (Malesia and Vietnam), and should not be neglected. The Guadalete river basin formed a suitable location to test this new method. First, monitoring in the Guadalquivir river was executed, with the use of a net to validate the readings of the sonar. Furthermore, the detecting abilities of the echosounder, in the Guadalete river basin, were tested with the use of plastic targets. The targets were released in the river and passed the sensor at a certain time. Moreover, tests in the lab at the TU Delft were conducted to investigate relations between sonar signal and flow velocity, object depth, and object size.</p><p>The tests show that submerged macro plastics can be detected with the use of echo sounding. Moreover, a relation between the sonar signal and litter size is found. Finally, signal intensities can be related to object properties. In conclusion, the use of echo sounding has a high potential for obtaining more accurate plastic flux estimations.</p>

2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Raka Maulana ◽  
Yulianti Pratama ◽  
Lina Apriyanti

<p>Some areas in the city of Bandung is an area that dilitasi by the flow of the river, to prevent the introduction of garbage into the river basin is necessary to note the waste management systems in residential areas along the river. Cidurian river has a length of 24.86 Km along the river flow. Consists of the city of Bandung and Bandung regency. Administrative regions Cidurian River past eight (8) districts, from the region in the District Kiaracondong precisely Village Babakan Babakan Sari and Surabaya populous and the most densely populated. Thus, there should be community-based waste management in the form of a reduction in resources to prevent potential entry of waste into the river basin. Planning waste reduction will be divided into two, namely the reduction of inorganic waste with waste bank then the reduction of organic waste with absorption holes biopori, and bio reactor mini determination of the reduction is determined by the results of the analysis of the sampling covers the composition and garbage, then the result of the measurement characteristics test and analysis results questionnaire.</p>


2016 ◽  
Vol 103 (6) ◽  
pp. 603-605 ◽  
Author(s):  
Paul Seddon ◽  
Sonia Sobowiec-Kouman ◽  
David Wertheim

Respiratory rate (RR) is a valuable early marker of illness in vulnerable infants, but current monitoring methods are unsuitable for sustained home use. We have demonstrated accurate measurement of RR from brief recordings of pulse oximeter plethysmogram (pleth) trace in full-term neonates in hospital. This study assessed the feasibility of this method in preterm infants during overnight recordings in the home. We collected simultaneous overnight SpO2, pleth and respiratory inductive plethysmography (RIP) on 24 preterm infants in the home. RR from pleth analysis was compared with RR from RIP bands; pleth quality was assessed by the presence of visible artefact. Median (range) RR from RIP and pleth were not significantly different at 42 (25–65) and 42 (25–64) breaths/min. Median (range) % of epochs rejected due to artefact was 20 (8–75) for pleth and 10 (3–53) for RIP. Our results suggest that home RR monitoring by pulse oximeter pleth signal is accurate and feasible.


2009 ◽  
Vol 24 (5) ◽  
pp. 889-908 ◽  
Author(s):  
Yongyong Zhang ◽  
Jun Xia ◽  
Tao Liang ◽  
Quanxi Shao

2021 ◽  
Author(s):  
Diver E. Marín ◽  
Juan F. Salazar ◽  
José A. Posada-Marín

&lt;p&gt;Some of the main problems in hydrological sciences are related to how and why river flows change as a result of environmental change, and what are the corresponding implications for society. This has been described as the Panta Rhei context, which refers to the challenge of understanding and quantifying hydrological dynamics in a changing environment, i.e. under the influence of non-stationary effects. The river flow regime in a basin is the result of a complex aggregation process that has been studied by the scaling theory, which allows river basins to be classified as regulated or unregulated and to identify a critical threshold between these states. Regulation is defined here as the basin&amp;#8217;s capacity to either dampen high flows or to enhance low flows. This capacity depends on how basins store and release water through time, which in turn depends on many processes that are highly dynamic and sensitive to environmental change. Here we focus on the Magdalena river basin in northwestern South America, which is the main basin for water and energy security in Colombia, and at the same time, it has been identified as one of the most vulnerable regions to be affected by climate change. Building upon some of our previous studies, here we use data analysis to study the evolution of regulation in the Magdalena basin for 1992-2015 based on the scaling theory for extreme flows. In contrast to most previous studies, here we focus on the scaling properties of events rather than on long term averages. We discuss possible relations between changes in the scaling properties and environmental factors such as climate variability, climate change, and land use/land cover change, as well as the potential implications for water security in the country. Our results show that, during the last few decades, the Magdalena river basin has maintained its capacity to regulate low flows (i.e. amplification) whereas it has been losing its capacity to regulate high flows (i.e. dampening), which could be associated with the occurrence of the extremes phases of&amp;#160; El Ni&amp;#241;o Southern Oscillation (ENSO) and anthropogenic effects, mainly deforestation. These results provide foundations for using the scaling laws as empirical tools for understanding temporal changes of hydrological regulation and simultaneously generate useful scientific evidence that allows stakeholders to take decisions related to water management in the Magdalena river basin in the context of environmental change.&lt;/p&gt;


1996 ◽  
Vol 34 (12) ◽  
pp. 33-40 ◽  
Author(s):  
Y. Hosoi ◽  
Y. Kido ◽  
H. Nagira ◽  
H. Yoshida ◽  
Y. Bouda

The inflow of pollutant load from urban areas and the stagnation of water due to sea water intrusion cause the deterioration of river water quality in tidal zone. In order to improve water quality, various measures such as the reduction of pollutant load by sewage systems, discharge control from sewage treatment plants considering river flow, nutrient removal by aquatic plants, and the dredging of bottom sediments have been examined. The choice of these measures depends on the situation of the river environment and finances. In this study, a field survey was carried out in a typical urban river basin, first. Secondly, on the basis of this survey, a mathematical model was formed to simulate flow and water quality. Several purification alternatives designed for the investigated river basin were comparatively evaluated from the viewpoint of the effect of water quality improvement and their cost. Finally, they were prioritized. Through this case study, a planning process of river water quality management was shown.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 268-277
Author(s):  
Normali na ◽  
Muhammad Hatta ◽  
Hafizia noor ◽  
Hamd ani

The research method is qualitative with phenomenological approach. The research design using one site involving Banjarmasin City in South Kalimantan, Indonesia. Data collection techniques used were content analysis, participatory observation and depth interviews. The analysis used in answering this research is a combination of various analytical methods to answer each of the objectives namely miles & Huberman analysis and Webbed Spider Model Analysis as the ultimate in formulating management of plastic waste through a leadership role. The results of this research found that the adaptation of environmentally sound habits in minimizing the production of plastics waste through local wisdom approaches and changing the people's mindset to live healtier. The purpose of writing this paper is to provide examples of new habits of healthy living by starting to reduce the use of plastic bags as the main source of waste generation that is not easily biodegradable in Banjarmasin City produced in every citi anywhere and is a major problem of environmental damage, including Banjarmasin City as a city of a thousand rivers, south Kalimantan Province. Effort to reduce the use of pastic bags began in stages, starting with modern retailers in the City of Banjarmasin. Through a leadership role based on local wisdom and a persuasive approach that is environmentally sound, it can provide solutions in current and future waste management. Result from this research is Banjramasin as the first City in Indonesia implemented regulation to reduction of plastic waste for modern retailers which are widely scattered throughout the City, sub-districts and villages. This is effective through regulation and direct approach to society. In the waste management that is carried out in the City of Banjarmasin includes waste reduction activities with ten activities and waste handling through five activities. As a substitute for these plastic bags, plastic bag producers are forced to use environmentally friendly plastic bags and / or purun baskets which are products of local wisdom of the people of South Kalimantan, Indonesia, all of these activities are carried out by involving the community by applying the rules without sanctions. Until this paper was written, there has never been a leader with leadership who has implemented a similar regulation as a direct effort from the role of a leader in reducing the use of plastic bags, where the use of plastic bags is the biggest contributor as a source of producing plastic waste.


2021 ◽  
pp. 1-20
Author(s):  
Faisal H. Husain

This chapter introduces the themes and arguments of the book. In particular, it explains the benefits of adopting a holistic approach to the history of the river basin that acknowledges its cultural, physical, and biological unity. Treating the Tigris and Euphrates as a continuous whole brings to light the magnitude and significance of river flow that fostered contacts between upstream and downstream regions. Beyond facilitating communication, the twin rivers formed the backbone of the early modern Ottoman economy in the region by supporting complementary subsistence strategies, such as irrigation agriculture, animal husbandry, and wetland exploitation. In addition to the themes and arguments, this chapter offers a brief introduction to the history of the Ottoman Empire and the ecology of the Tigris-Euphrates basin.


Sign in / Sign up

Export Citation Format

Share Document