Future changes in ENSO teleconnections over the North Pacific and North America in CMIP6 simulations

Author(s):  
Jonathan Beverley ◽  
Mat Collins ◽  
Hugo Lambert ◽  
Rob Chadwick

<p>El Niño–Southern Oscillation (ENSO) has major impacts on the weather and climate across many regions of the world. Understanding how these teleconnections may change in the future is therefore an important area of research. Here, we use simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to investigate future changes in ENSO teleconnections in the North Pacific/North America sector.</p><p>Precipitation over the equatorial Pacific associated with ENSO is projected to shift eastwards under global warming as a result of greater warming in the east Pacific, which reduces the barrier to convection as the warm pool expands eastwards. As a result, there is medium confidence (IPCC AR5 report) that ENSO teleconnections will shift eastwards in the North Pacific/North America sector. In the CMIP6 models, the present day teleconnection is relatively well simulated, with most models showing an anomalously deep Aleutian low and associated positive temperature anomalies over Alaska and northern North America in El Niño years. In the future warming simulations (we use abrupt-4xCO2, in which CO2 concentrations are immediately quadrupled from the global annual mean 1850 value), in agreement with the IPCC AR5 report, the North America teleconnection and associated circulation change is shifted eastwards in most models. However, it is also significantly weaker, with the result that the positive temperature anomalies in El Niño years over North America are much reduced. This weakening is seen both in models with a projected increase and projected decrease in the amplitude of future El Niño events. The mechanisms related to these projected changes, along with potential implications for future long range predictability over North America, will be discussed.</p>

2021 ◽  
pp. 1-43
Author(s):  
Jonathan D. Beverley ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

AbstractThe El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability and it exerts a strong influence on many remote regions of the world, for example in northern North America. Here, we examine future changes to the positive-phase ENSO teleconnection to the North Pacific/North America sector and investigate the mechanisms involved. We find that the positive temperature anomalies over Alaska and northern North America that are associated with an El Niño event in the present day are much weaker, or of the opposite sign, in the CMIP6 abrupt 4×CO2 experiments for almost all models (22 out of 26, of which 15 are statistically significant differences). This is largely related to changes to the anomalous circulation over the North Pacific, rather than differences in the equator-to-pole temperature gradient. Using a barotropic model, run with different background circulation basic states and Rossby wave source forcing patterns from the individual CMIP6 models, we find that changes to the forcing from the equatorial central Pacific precipitation anomalies are more important than changes in the global basic state background circulation. By further decomposing this forcing change into changes associated with the longitude and magnitude of ENSO precipitation anomalies, we demonstrate that the projected overall eastward shift of ENSO precipitation is the main driver of the temperature teleconnection change, rather than the increase in magnitude of El Niño precipitation anomalies which are, nevertheless, seen in the majority of models.


2019 ◽  
Vol 19 (6) ◽  
pp. 3927-3937 ◽  
Author(s):  
Daniel Mewes ◽  
Christoph Jacobi

Abstract. Arctic amplification causes the meridional temperature gradient between middle and high latitudes to decrease. Through this decrease the large-scale circulation in the midlatitudes may change and therefore the meridional transport of heat and moisture increases. This in turn may increase Arctic warming even further. To investigate patterns of Arctic temperature, horizontal transports and their changes in time, we analysed ERA-Interim daily winter data of vertically integrated horizontal moist static energy transport using self-organizing maps (SOMs). Three general transport pathways have been identified: the North Atlantic pathway with transport mainly over the northern Atlantic, the North Pacific pathway with transport from the Pacific region, and the Siberian pathway with transport towards the Arctic over the eastern Siberian region. Transports that originate from the North Pacific are connected to negative temperature anomalies over the central Arctic. These North Pacific pathways have been becoming less frequent during the last decades. Patterns with origin of transport in Siberia are found to have no trend and show cold temperature anomalies north of Svalbard. It was found that transport patterns that favour transport through the North Atlantic into the central Arctic are connected to positive temperature anomalies over large regions of the Arctic. These temperature anomalies resemble the warm Arctic–cold continents pattern. Further, it could be shown that transport through the North Atlantic has been becoming more frequent during the last decades.


2016 ◽  
Vol 29 (15) ◽  
pp. 5661-5674 ◽  
Author(s):  
Henry F. Diaz ◽  
Eugene R. Wahl ◽  
Eduardo Zorita ◽  
Thomas W. Giambelluca ◽  
Jon K. Eischeid

Abstract Few if any high-resolution (annually resolved) paleoclimate records are available for the Hawaiian Islands prior to ~1850 CE, after which some instrumental records start to become available. This paper shows how atmospheric teleconnection patterns between North America and the northeastern North Pacific (NNP) allow for reconstruction of Hawaiian Islands rainfall using remote proxy information from North America. Based on a newly available precipitation dataset for the state of Hawaii and observed and reconstructed December–February (DJF) sea level pressures (SLPs) in the North Pacific Ocean, the authors make use of a strong relationship between winter SLP variability in the northeast Pacific and corresponding DJF Hawaii rainfall variations to reconstruct and evaluate that season’s rainfall over the period 1500–2012 CE. A general drying trend, though with substantial decadal and longer-term variability, is evident, particularly during the last ~160 years. Hawaiian Islands rainfall exhibits strong modulation by El Niño–Southern Oscillation (ENSO), as well as in relation to Pacific decadal oscillation (PDO)-like variability. For significant periods of time, the reconstructed large-scale changes in the North Pacific SLP field described here and by construction the long-term decline in Hawaiian winter rainfall are broadly consistent with long-term changes in tropical Pacific sea surface temperature (SST) based on ENSO reconstructions documented in several other studies, particularly over the last two centuries. Also noted are some rather large multidecadal fluctuations in rainfall (and hence in NNP SLP) in the eighteenth century of undetermined provenance.


2007 ◽  
Vol 20 (21) ◽  
pp. 5285-5300 ◽  
Author(s):  
B. Yu ◽  
A. Shabbar ◽  
F. W. Zwiers

Abstract This study provides further evidence of the impacts of tropical Pacific interannual [El Niño–Southern Oscillation (ENSO)] and Northern Pacific decadal–interdecadal [North Pacific index (NPI)] variability on the Pacific–North American (PNA) sector. Both the tropospheric circulation and the North American temperature suggest an enhanced PNA-like climate response and impacts on North America when ENSO and NPI variability are out of phase. In association with this variability, large stationary wave activity fluxes appear in the mid- to high latitudes originating from the North Pacific and flowing downstream toward North America. Atmospheric heating anomalies associated with ENSO variability are confined to the Tropics, and generally have the same sign throughout the troposphere with maximum anomalies at 400 hPa. The heating anomalies that correspond to the NPI variability exhibit a center over the midlatitude North Pacific in which the heating changes sign with height, along with tropical anomalies of comparable magnitudes. Atmospheric heating anomalies of the same sign appear in both the tropical Pacific and the North Pacific with the out-of-phase combination of ENSO and NPI. Both sources of variability provide energy transports toward North America and tend to favor the occurrence of stationary wave anomalies.


2018 ◽  
Author(s):  
Daniel Mewes ◽  
Christoph Jacobi

Abstract. Arctic Amplification causes the meridional temperature gradient between middle and high latitudes to decrease. It is assumed that through this decrease the large-scale circulation changes and therefore the meridional transport of heat and moisture increases. This in turn may increase Arctic warming even further. To investigate patterns of Arctic temperature, horizontal fluxes and their changes in time, we analyzed ERA-Interim daily winter data of vertically integrated horizontal heat transport using Self-Organizing Maps (SOM). Three general transport pathways have been identified: the North Atlantic Pathway with transport mainly over the northern Atlantic, the North Pacific Pathway with transport from the Pacific region, and the Siberian Pathway with transport towards the Arctic over the eastern Siberian region. Transports that originate from the North Pacific are connected with negative temperature anomalies over the central Arctic. These North Pacific Pathways are getting less frequent during the last decades. Patterns with origin of transport in Siberia are found to have no trend and show cold temperature anomalies north of Svalbard. It was found that transport patterns that favor transport through the North Atlantic into the central Arctic are connected with positive temperature anomalies over large regions of the Arctic. These temperature anomalies resemble the warm Arctic cold continent effect. Further, it could be shown that transports through the North Atlantic are getting significantly more frequent during the last decades.


2019 ◽  
Vol 32 (19) ◽  
pp. 6271-6284 ◽  
Author(s):  
Xiaofan Li ◽  
Zeng-Zhen Hu ◽  
Ping Liang ◽  
Jieshun Zhu

Abstract In this work, the roles of El Niño–Southern Oscillation (ENSO) in the variability and predictability of the Pacific–North American (PNA) pattern and precipitation in North America in winter are examined. It is noted that statistically about 29% of the variance of PNA is linearly linked to ENSO, while the remaining 71% of the variance of PNA might be explained by other processes, including atmospheric internal dynamics and sea surface temperature variations in the North Pacific. The ENSO impact is mainly meridional from the tropics to the mid–high latitudes, while a major fraction of the non-ENSO variability associated with PNA is confined in the zonal direction from the North Pacific to the North American continent. Such interferential connection on PNA as well as on North American climate variability may reflect a competition between local internal dynamical processes (unpredictable fraction) and remote forcing (predictable fraction). Model responses to observed sea surface temperature and model forecasts confirm that the remote forcing is mainly associated with ENSO and it is the major source of predictability of PNA and winter precipitation in North America.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Lindsay Worthington ◽  
Kristen St. John ◽  
Bernard Coakley

International Ocean Discovery Program Workshop; Mount Hood, Oregon, 25–27 September 2018


2020 ◽  
Vol 33 (5) ◽  
pp. 1691-1706 ◽  
Author(s):  
Shizuo Liu ◽  
Qigang Wu ◽  
Steven R. Schroeder ◽  
Yonghong Yao ◽  
Yang Zhang ◽  
...  

AbstractPrevious studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.


Sign in / Sign up

Export Citation Format

Share Document