Real-Time Reservoir Operation by Tree-Based Model Predictive Control Including Forecast Uncertainty

Author(s):  
Gokcen Uysal ◽  
Rodolfo-Alvarado Montero ◽  
Dirk Schwanenberg ◽  
Aynur Sensoy

<p>Streamflow forecasts include uncertainties related with initial conditions, model forcings, hydrological model structure and parameters. Ensemble streamflow forecasts can capture forecast uncertainties by having spread forecast members. Integration of these forecast members into real-time operational decision models which deals with different objectives such as flood control, water supply or energy production are still rare. This study aims to use ensemble streamflows as input of the recurrent reservoir operation problem which can incorporate (i) forecast uncertainty, (ii) forecasts with a higher lead-time and (iii) a higher stability. A related technique for decision making is multi-stage stochastic optimization using scenario trees, referred to as Tree-based Model Predictive Control (TB-MPC). This approach reduces the number of ensemble members by its tree generation algorithms using all trajectories and then proper problem formulation is set by Multi-Stage Stochastic Programming. The method is relatively new in reservoir operation, especially closed-loop hindcasting experiments and its assessment is quite rare in the literature. The aim of this study is to set a TB-MPC based real-time reservoir operation with hindcasting experiments. To that end, first hourly deterministic streamflows having one single member are produced using an observed flood hydrograph. Deterministic forecasts are tested with conventional deterministic optimization setup. Secondly, hourly ensemble streamflow forecasts having a lead-time up to 48 hours are produced by a novel approach which explicitly presents dynamic uncertainty evolution. Produced ensemble members are directly provided to input to related technique. Uncertainty becomes much larger when managing small basins and small rivers. Thus, the methodology is applied to the Yuvacik dam reservoir, fed by a catchment area of 258 km<sup>2</sup> and located in Turkey, owing to its challenging flood control and water supply operation due to downstream flow constraints. According to the results, stochastic optimization outperforms conventional counterpart by considering uncertainty in terms of flood metrics without discarding water supply purposes. The closed-loop hindcasting experiment scenarios demonstrate the robustness of the system developed against biased information. In conclusion, ensemble streamflows produced from single member can be employed to TB-MPC for better real-time management of a reservoir control system.</p>

2021 ◽  
Vol 595 ◽  
pp. 126017
Author(s):  
Jiabiao Wang ◽  
Tongtiegang Zhao ◽  
Jianshi Zhao ◽  
Hao Wang ◽  
Xiaohui Lei

2017 ◽  
Vol 32 (2) ◽  
pp. 583-597 ◽  
Author(s):  
Gökçen Uysal ◽  
Dirk Schwanenberg ◽  
Rodolfo Alvarado-Montero ◽  
Aynur Şensoy

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3576
Author(s):  
Jun Zhang ◽  
Yaowu Min ◽  
Baofei Feng ◽  
Weixin Duan

In today’s reservoir operation study, it is urgent to solve the issues on improving flood resource utilization, maximizing reservoir impoundment, and guaranteeing water supply through real-time regulation optimization under the premise of ensuring flood control safety and taking risks properly. Based on previous studies, the key real-time operation technologies for dynamic control of reservoir water levels in flood season are summarized. The Danjiangkou Reservoir was taken as an example, the division of flood stages, reservoir water level requirements for improving water supply guarantee, dynamic control indexes of reservoir water level for beneficial use in stages during the flood season, and flood control dispatching indexes are proposed. Moreover, a practicable real-time flood forecast operation scheme for Danjiangkou Reservoir was compiled. Its application in 2017 indicated that the established scheme can provide strong technical support to ensure the overall benefits of Danjiangkou Reservoir, including flood control, water supply, and power generation.


2008 ◽  
Vol 10 (1) ◽  
pp. 23-41 ◽  
Author(s):  
Yongdae Lee ◽  
Sheung-Kown Kim ◽  
Ick Hwan Ko

Operation planning for a coordinated multi-reservoir is a complex and challenging task due to the inherent uncertainty in inflow. In this study, we suggest the use of a new, multi-stage and scenario-based stochastic linear program with a recourse model incorporating the meteorological weather prediction information for daily, coordinated, multi-reservoir operation planning. Stages are defined as prediction lead-time spans of the weather prediction system. The multi-stage scenarios of the stochastic model are formed considering the reliability of rainfall prediction for each lead-time span. Future inflow scenarios are generated by a rainfall–runoff model based on the rainfall forecast. For short-term stage (2 days) scenarios, the regional data assimilation and prediction system (RDAPS) information is employed, and for mid-term stage (more than 2 days) scenarios, precipitation from the global data assimilation and prediction system (GDAPS) is used as an input for the rainfall–runoff model. After the 10th day (third stage), the daily historical rainfall data are used following the ensemble streamflow prediction (ESP) procedure. The model is applied to simulate the daily reservoir operation of the Nakdong River basin in Korea in a real-time operational environment. The expected benefit of the stochastic model is markedly superior to that of the deterministic model with average rainfall information. Our study results confirm the effectiveness of the stochastic model in real-time operation with meteorological forecasts and the presence of inflow uncertainty.


2014 ◽  
Vol 15 (6) ◽  
pp. 2470-2483 ◽  
Author(s):  
Tushar Sinha ◽  
A. Sankarasubramanian ◽  
Amirhossein Mazrooei

Abstract Despite considerable progress in developing real-time climate forecasts, most studies have evaluated the potential in seasonal streamflow forecasting based on ensemble streamflow prediction (ESP) methods, utilizing only climatological forcings while ignoring general circulation model (GCM)-based climate forecasts. The primary limitation in using GCM forecasts is their coarse resolution, which requires spatiotemporal downscaling to implement land surface models. Consequently, multiple sources of errors are introduced in developing real-time streamflow forecasts utilizing GCM forecasts. A set of error decomposition metrics is provided to address the following questions: 1) How are errors in monthly streamflow forecasts attributed to various sources such as temporal disaggregation, spatial downscaling, imprecise initial hydrologic conditions (IHCs), climatological forcings, and imprecise forecasts? and 2) How do these errors propagate with lead time over different seasons? A calibrated Variable Infiltration Capacity model is used over the Apalachicola River at Chattahoochee in the southeastern United States. The model is forced with a combination of daily precipitation forcings (temporally disaggregated observed precipitation, spatially downscaled and temporally disaggregated observed precipitation, ESP, ECHAM4.5 forecasts, and observed) and IHCs [simulated and climatological ensemble reverse ESP (RESP)] but with observed air temperature and wind speed at ⅛° resolution. Then, errors in forecasting monthly streamflow at up to a 3-month lead time are decomposed by comparing the forecasted streamflow to simulated streamflow under observed forcings. Results indicate that the errors due to temporal disaggregation are much higher than the spatial downscaling errors. During winter and early spring, the increasing order of errors at a 1-month lead time is spatial downscaling, model, temporal disaggregation, RESP, large-scale precipitation forecasts, and ESP.


2018 ◽  
Vol 13 (4) ◽  
pp. 650-659
Author(s):  
Daisuke Nohara ◽  
◽  
Tomoharu Hori

This paper presents approaches and case studies for the introduction of ensemble hydrological predictions to reservoir operation for water supply. Medium-term operational ensemble forecasts of precipitation are employed to improve the real-time reservoir operation for drought management considering longer prospects with respect to future hydrological conditions in the target river basin. Real-time optimization of the water release strategy is conducted using dynamic programming approaches considering ensemble hydrological predictions. A case study on the application of ensemble hydrological predictions to reservoir operation for water use is reported as an example, with a hypothetical target river basin whose hydrological characteristics are derived from an actual reservoir and river basin.


2019 ◽  
Vol 11 (7) ◽  
pp. 1827 ◽  
Author(s):  
Wenhua Wan ◽  
Jianshi Zhao ◽  
Jiabiao Wang

Conventional reservoir operation rule curves are based on the assumption of hydrological stationarity. The aggravating non-stationarity under the changing environment rocked this foundation. The hedging theory is one of the options for adaptive operation based on hydrological forecasts, which can provide a practical tool for optimal reservoir operation under a changing environment. However, the connections between hedging theory and rule curves are not clear. This paper establishes the linkage of rule curves and hedging theory by analyzing three fundamental problems surrounding the design of conventional rule curves, namely the law and design of water supply rule curves, the determination of flood control storage, and the division of refill and drawdown circle. The general interpretation of the conventional water supply rule curves with hedging theory is conducted. Both the theoretical analyses and the Danjiangkou Reservoir case study reveal that, based on the historical records, the rule curves can be interpreted as a specific expression of hedging theory. This intrinsic linkage allows us to propose a more general and scientific method of updating rule curves in the context of non-stationarity. On this basis, the rule-curve-based climate adaptation strategies are figured out using hedging theory. This research is helpful for practical adaptive operation of reservoirs in the changing environment.


Sign in / Sign up

Export Citation Format

Share Document