Renewal of a national soil water management category system and legacy map by data mining methods, digital primary and hydrological soil property maps

Author(s):  
Brigitta Szabó ◽  
Annamária Laborczi ◽  
Gábor Szatmári ◽  
Zsófia Bakacsi ◽  
András Makó ◽  
...  

<p>Soil physical properties and soil water regime have been in the focus of soil surveys and mapping in Hungary due to their importance in various environmental processes and hazards, like waterlogging and drought, which endanger extended areas. <br>In the late ‘70s a category system was elaborated for the planning of water management, which was used as the legend of a nationwide map prepared at a scale of 1:500.000. Soils were characterized qualitatively (e.g.: soil with unfavorable water management was defined with low infiltration rate, very low permeability and hydraulic conductivity, and high water retention), without quantification of these features. The category system was also used for creating large-scale (1:10.000) water management maps, which are contained legally by expert’s reports prepared on the subject of drainage, irrigation, liquid manure, sewage or sewage-sludge disposal. These maps were prepared eventually, essentially for individual plots and are not managed centrally and are not available for further applications.<br>Recently a 3D Soil Hydraulic Database was elaborated for Europe at 250 m resolution based on specific pedotransfer functions and soil property maps of SoilGrids. The database includes spatial information on the soil water content at the most frequently used matric potential values, saturated hydraulic conductivity, Mualem-van Genuchten parameters of the moisture retention and hydraulic conductivity curves. Based on similar idea, the work has been continued to produce more accurate and spatially more detailed hydrophysical maps in Hungary by generalizing the applied pedotransfer functions and using national soil reference data and high resolution, novel, digital soil property maps.<br>We initiated a study in order to formalize the built-in soil-landscape model(s) of the national legacy map on water management, together with the quantification of its categories and its potential disaggregation. The relation of the legacy map with the newly elaborated 3D estimations were evaluated at two scales: nationwide with 250 m resolution and at catchment scale with 100 m resolution. Hydrological and primary soil property maps were used as predictor variables. Unsupervised classifications were performed for spatial-thematic aggregation of the soil hydraulic datasets to identify their intrinsic characteristics, which were used for the elaboration of a renewed water management classification. Hydrological interpretation of the categories provided by the optimum classifications has been carried out (i) by their spatial cross-tabulation with the categories of the legacy map and (ii) using the interval estimation of the applied soil hydraulic properties provided for the individual water management categories. Machine learning approaches were used to analyze the information content of the legacy maps’s category system, whose results were used for its disaggregation. Conditionally located random points were sequentially generated for virtual sampling of the legacy map to produce reference information. The disaggregated maps with the legend of the traditional water management classes were produced both on national and catchment level.</p><p>Acknowledgment: The research has been supported by the Hungarian National Research, Development and Innovation Office (NRDI) under grants KH124765, KH126725, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the MTA Cloud infrastructure (https://cloud.mta.hu/).</p>

2021 ◽  
Author(s):  
Budiman Minasny ◽  
Rudiyanto Rudiyanto ◽  
Federico Maggi

<p>To study the effect of drought on soil water dynamics, we need an accurate description of water retention and hydraulic conductivity from saturation to complete dryness. Recent studies have demonstrated the inaccuracy of conventional soil hydraulic models, especially in the dry end. Likewise, current pedotransfer functions (PTFs) for soil hydraulic properties are based on the classical Mualem-van Genuchten functions.</p><p>This study will evaluate models that estimate soil water retention and unsaturated hydraulic conductivity curves in full soil moisture ranges. An example is the Fredlund-Xing scaling model coupled with the hydraulic conductivity model of Wang et al. We will develop pedotransfer functions that can estimate parameters of the model. We will compare it with existing PTFs in predicting water retention and hydraulic conductivity.</p><p>The results show that a new suite of PTFs that used sand, silt, clay, and bulk density can be used successfully to predict water retention and hydraulic conductivity over a range of moisture content. The prediction of hydraulic properties is used in a soil water flow model to simulate soil moisture dynamics under drought. This study demonstrates the importance of accurate hydraulic model prediction for a better description of soil moisture dynamics.</p><p> </p>


2010 ◽  
Vol 63 (4) ◽  
pp. 827-838 ◽  
Author(s):  
Mustafa Basaran ◽  
G. Erpul ◽  
A. U. Ozcan ◽  
D. S. Saygin ◽  
M. Kibar ◽  
...  

2010 ◽  
Vol 7 (5) ◽  
pp. 6491-6523
Author(s):  
G. H. de Rooij

Abstract. Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.


2020 ◽  
Vol 34 (3) ◽  
pp. 310-324
Author(s):  
Leonardo Ezequiel Scherger ◽  
Victoria Zanello ◽  
Claudio Lexow

The aim of this work is to compare the use of the inverse solution approach in the estimation of soil hydraulic properties with traditional tension disk infiltrometer (TDI) data analysis, field retention data and commonly used pedotransfer functions (PTFs). Field data were collected in an experimental plot located at Bahía Blanca, Argentina. Field infiltration under saturated conditions was measured by the inverse auger hole method and infiltration under unsaturated conditions were carried out with TDI. Field retention data (θ(h)) were also collected periodically. The HYDRUS 2D/3D software was used to optimize soil hydraulic parameters by inverse solution according to TDI data. The saturated hydraulic conductivity measured by inverse auger hole method (5.53 cm.h-1) and calculated by Wooding analytical approach (5.35 cm.h-1) and inverse numerical simulations (5.36 cm.h-1) showed very close values. According to macroporosity estimates infiltrated water is mainly conducted through soils micro and mesopores.  Macropores only channeled 15.9% of total infiltrated flow.  Soil water retention curves (SWRC) predicted by PTFs did not represented correctly field retention data. The best adjustment between water content at specific pressure heads predicted by SWRCs and field measured water content was reached by the TDI inverse solution approach (RMSE: 0.050 cm3.cm-3). The inverse solution approach probed to be a simple and practical method to obtain an accurate estimate of both, SWRC and hydraulic conductivity curve.


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 1147 ◽  
Author(s):  
P. A. Hutchinson ◽  
W. J. Bond

We describe a new tensiometer for routine measurements of the soil water potential near saturation. The device is called the tube tensiometer because it is a long, open-topped, vertical tube (>1 m long) that is filled with porous material. The tube tensiometer has advantages over other known tensiometers as it does not require maintenance when the sensing tip dries beyond its air entry pressure and it is capable of being completely buried beyond the cultivation zone so that it does not foul tillage and harvesting equipment. The disadvantage of the tube tensiometer is that it only operates in the range of soil water potentials from –L to 0 cm of water, where L is the length of the tube tensiometer. The output from the tube tensiometer was compared with mercury tensiometers in a 120-day controlled field drainage and evaporation experiment. The regression between instruments was high (r2 = 0.99) and the accuracy of the tube tensiometer was <0.5 cm of water. The soil water potential gradient near saturation can be measured by installing a pair of vertically separated tube tensiometers. If the soil hydraulic conductivity is known then the soil water flux near saturation can be estimated using Darcy's Law. When the installation depth is below the active rooting zone of a crop then deep drainage can be estimated. This application of the tube tensiometer was demonstrated by measuring the vertical soil water potential gradient at a depth of 1 m beneath a wheat field near Harden, NSW, in response to winter rainfall. The major limitation to the use of Darcy's Law for the routine monitoring of deep drainage remains the estimation of the soil hydraulic conductivity. Ongoing work is focussing on the use of tube tensiometers to provide simultaneous measurements of both hydraulic gradient and hydraulic conductivity.


2021 ◽  
Author(s):  
Andrea Carminati ◽  
Mathieu Javaux

<p>There is increasing need for mechanistic and predictive models of transpiration and stomatal response to drought. Global measurements of transpiration showed that the decrease in soil moisture is a primary constrain on transpiration. Additionally, a recent meta-analysis indicated that stomatal closure is explained by the loss in soil hydraulic conductivity, more than that of the xylem. Despite these evidences on the role of soil drying as a key driver of transpiration reduction, the mechanisms by which soil drying impacts transpiration, including the effect of different soil hydraulic properties, are not fully understood.</p><p>Here, we propose that stomata regulate transpiration in such a way that the relation between transpiration and the difference in water potential between soil and leaves remains linear during soil drying and increasing vapor pressure deficit (VPD). The onset of hydraulic nonlinearity sets the maximum stomatal conductance at a given soil water potential and VPD. The resulting trajectory of the stomatal conductance for varying soil water potentials and VPD depends on soil and plant hydraulics, with the soil hydraulic conductivity and root length being the most sensitive parameters.</p><p>From this hydraulic framework it follows that stomatal closure is not simply a function of soil moisture, soil water potential or leaf water potential. Instead, it depends on transpiration demand and soil-plant hydraulics in a predictable way. The proposed concept allows to predict transpiration reductions during drought with a limited number of parameters: transpiration demand, plant hydraulic conductivity, soil hydraulic conductivity and active root length. In conclusion, this framework highlights the role of the soil hydraulic conductivity as primary constrain on transpiration, and thus on stomatal conductance and photosynthesis.</p>


2020 ◽  
Author(s):  
Jesús Fernández-Gálvez ◽  
Joseph Pollacco ◽  
Laurent Lassabatere ◽  
Rafael Angulo-Jaramillo ◽  
Sam Carrick

<p>Soil hydraulic characterization is crucial to describe the retention and transport of water in soil, but current methodologies limit its spatial applicability. This work presents a cost-effective general Beerkan Estimation of Soil Transfer parameters (BEST) methodology using single ring infiltration experiments to derive soil hydraulic parameters for any type of unimodal water retention and hydraulic conductivity functions. The proposed method relies on the BEST approach. The novelty lies in the use of Kosugi hydraulic parameters without need for textural information. Kosugi functions were chosen because they are based on physical principles (log-normal distribution for pore size distributions). A link between the Kosugi parameters (i.e., relationship between <em>σ</em> and <em>h</em><sub>kg</sub>) was introduced to reduce the number of parameters estimated and to avoid the need for information on the soil texture. This simplifies the procedures and avoids sources of errors related to the use of pedotransfer functions as for the previous BEST methods. Lastly, the method uses a quasi-exact formulation that is valid for all times, instead of the approximate expansions previously used, avoiding related inaccuracy and allowing the use of any infiltration data encompassing or not both transient and steady states. The new BEST methods were tested against numerically generated data for several contrasting synthetic soils, and the results show that these methods provide consistent hydraulic functions close to the target functions. The new BEST method is accurate and can use any type of water retention and hydraulic conductivity functions (Fernández-Gálvez et al., 2019).</p><p> </p><p> </p><p><strong>Reference</strong></p><p>Fernández-Gálvez, J., Pollacco, J.A.P., Lassabatere, L., Angulo-Jaramillo, R., Carrick, S., 2019. A general Beerkan Estimation of Soil Transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the Kosugi soil hydraulic model without using particle size distribution data. Adv. Water Resour. 129, 118–130. https://doi.org/10.1016/j.advwatres.2019.05.005</p>


1990 ◽  
Vol 41 (4) ◽  
pp. 709 ◽  
Author(s):  
J Eastham ◽  
CW Rose ◽  
DM Cameron ◽  
SJ Rance ◽  
T Talsma ◽  
...  

Eucalyptus grandis was planted in a Nelder fan design in November 1983 into a previously established pasture dominated by Setaria sphacelata cv. Kazungula, at the CSIRO Sanford Pasture Research Station, Queensland, Australia. Nine concentric rings of 18 trees were planted at radii of 4.4-61.6 m, giving a range of tree densities which decreased from 3580 to 42 stems/ha. Tree transpiration was studied at three tree densities (2150, 304 and 82 stems/ha, representing high, medium and low densities) over a 'drought' period of approximately 1 yr (Nov. 1985-Sep. 1986) and related to rooting patterns and soil hydraulic properties. Over the range of soil water contents studied, the ratio of tree transpiration rate to equilibrium evaporation rate (T/Esub(eq)) decreased linearly with decreasing mean soil water content at each tree density. To investigate the effects of soil hydraulic conductivity and root length density on the total transpirational flux, overall soil conductances (Ksub(s)) were calculated, with soil conductance in each horizon weighted according to the length of root in that horizon. At each tree density, decreases in the ratio T/Esub(eq) were related to decreases in ln Ksub(s) measured at 1.2 m from the stem. A more rapid decrease in T/Esub(eq) with decrease in water content observed at the low tree density was attributed to a greater decrease in Ksub(s) as mean water contents decreased. The greater decrease in Ksub(s) at low tree densities was associated with a larger proportion of water extracted and a higher proportion of total root length in surface soil horizons, which showed a greater decrease in hydraulic conductivity than subsoil horizons for the same decrease in water content.


Sign in / Sign up

Export Citation Format

Share Document