water potential gradient
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hiroshi Wada ◽  
Keisuke Nakata ◽  
Hiroshi Nonami ◽  
Rosa Erra-Balsells ◽  
Miho Tatsuki ◽  
...  

AbstractWatercore is a physiological disorder in apple (Malus × domestica Borkh.) fruits that appears as water-soaked tissues adjacent to the vascular core, although there is little information on what exactly occurs at cell level in the watercored apples, particularly from the viewpoint of cell water relations. By combining picolitre pressure-probe electrospray-ionization mass spectrometry (picoPPESI-MS) with freezing point osmometry and vapor pressure osmometry, changes in cell water status and metabolisms were spatially assayed in the same fruit. In the watercored fruit, total soluble solid was lower in the watercore region than the normal outer parenchyma region, but there was no spatial difference in the osmotic potentials determined with freezing point osmometry. Importantly, a disagreement between the osmotic potentials determined with two methods has been observed in the watercore region, indicating the presence of significant volatile compounds in the cellular fluids collected. In the watercored fruit, cell turgor varied across flesh, and a steeper water potential gradient has been established from the normal outer parenchyma region to the watercore region, retaining the potential to transport water to the watercore region. Site-specific analysis using picoPPESI-MS revealed that together with a reduction in turgor, remarkable metabolic modifications through fermentation have occurred at the border, inducing greater production of watercore-related volatile compounds, such as alcohols and esters, compared with other regions. Because alcohols including ethanol have low reflection coefficients, it is very likely that these molecules would have rapidly penetrated membranes to accumulate in apoplast to fill. In addition to the water potential gradient detected here, this would physically contribute to the appearance with high tissue transparency and changes in colour differences. Therefore, it is concluded that these spatial changes in cell water relations are closely associated with watercore symptoms as well as with metabolic alterations.


Author(s):  
Yongfeng Gong ◽  
Zuo Liu ◽  
Chuanming Ma ◽  
Minghong Li ◽  
Xu Guo

To study the lateral seepage field in the tension saturated zone (TSZ), an experiment with no evaporation and precipitation infiltration was carried out in a self-made seepage tank filled up with fine sand. Based on the data and plots obtained, the lateral seepage field distribution features in the TSZ can be divided into three area for discussion: ascending area, descending area, and the nearly horizontal flow area. In the ascending and descending area, the total water potential gradient diminished from the recharge area to the discharge area and the seepage velocity was faster. In the nearly horizontal flow area, the total water potential gradient was lower and the seepage velocity was slower. The pressure potential gradually decreased horizontally from the recharge area to the discharge area, while in the vertical profile, it gradually decreased from the bottom to the top in the whole seepage area. In the absence of evaporation, the vertical water exchange among the saturated zone, TSZ, and unsaturated zone in nearly horizontal flow area is weak. Contrarily, in the ascending area and descending area, vertical water flows through both the phreatic surface and the upper interface of the TSZ. When there is lateral seepage in the TSZ, the thickness of the TSZ generally increases from the ascending area to the nearly horizontal area and then to the descending area. It should be pointed out that in the nearly horizontal area, the TSZ thickness is approximately equal to the height of the water column. Overall, the lateral seepage in the TSZ can be regarded as a stable siphon process, hence the siphon tube model can be further used to depict this lateral seepage.


2021 ◽  
Author(s):  
R. Mohan Kumar ◽  
Yamanura . ◽  
B. Boraiah

Exploring ecosystem services for environment sustainability is the trending area of research in the field of natural resource management (NRM). Water is an important entity of agro-ecosystem, dryland agriculture greatly suffers due to want of moisture. Bi-cropping is one practice where different crops are grown in proximity to realize various benefits under uncertainties of dryland agriculture. Literacy among multifarious benefits of bi-cropping over monoculture is fairly rich among the researchers as well as growers. However, bio-irrigation is one such co-benefits which address about drought alleviating strategies under bi-cropping practice. In this technique, deep rooted plants suck up water from deep moist sub-soil and deposit part of that sucked water in the upper dry soil layers due to water potential gradient, during this hydraulic lift and redistribution shallow rooted neighboring crops in close proximity gets due benefits of this lifted water in alleviating drought. This is high time to device cropping systems of water limited environment to unlock the potentiality of dryland production units. Based on the published studies Piliostigma reticulatum, Guiera senegalensis, Panicum maximum, Festuca arundinacea and Cajanus cajan were identified as potential bio-irrigator arid agro-ecosystem.


2019 ◽  
Vol 133 (1) ◽  
pp. 3-14
Author(s):  
Yutaka Miyazawa ◽  
Hideyuki Takahashi

AbstractRoots display directional growth toward moisture in response to a water potential gradient. Root hydrotropism is thought to facilitate plant adaptation to continuously changing water availability. Hydrotropism has not been as extensively studied as gravitropism. However, comparisons of hydrotropic and gravitropic responses identified mechanisms that are unique to hydrotropism. Regulatory mechanisms underlying the hydrotropic response appear to differ among different species. We recently performed molecular and genetic analyses of root hydrotropism in Arabidopsis thaliana. In this review, we summarize the current knowledge of specific mechanisms mediating root hydrotropism in several plant species.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 583
Author(s):  
Zhengkai Peng ◽  
Linlin Wang ◽  
Junhong Xie ◽  
Lingling Li ◽  
Jeffrey A. Coulter ◽  
...  

Water availability is a major constraint for crop production in semiarid environments. The impact of tillage practices on water potential gradient, water transfer resistance, yield, and water use efficiency (WUEg) of spring wheat was determined on the western Loess Plateau. Six tillage practices implemented in 2001 and their effects were determined in 2016 and 2017 including conventional tillage with no straw (T), no-till with straw cover (NTS), no-till with no straw (NT), conventional tillage with straw incorporated (TS), conventional tillage with plastic mulch (TP), and no-till with plastic mulch (NTP). No-till with straw cover, TP, and NTP significantly improved soil water potential at the seedling stage by 42, 47, and 57%, respectively; root water potential at the seedling stage by 34, 35, and 51%, respectively; leaf water potential at the seedling stage by 37, 48, and 42%, respectively; tillering stage by 21, 24, and 30%, respectively; jointing stage by 28, 32, and 36%, respectively; and flowering stage by 10, 26, and 16%, respectively, compared to T. These treatments also significantly reduced the soil–leaf water potential gradient at the 0–10 cm soil depth at the seedling stage by 35, 48, and 35%, respectively, and at the 30–50 cm soil depth at flowering by 62, 46, and 65%, respectively, compared to T. Thus, NTS, TP, and NTP reduced soil–leaf water transfer resistance and enhanced transpiration. Compared to T, the NTS, TP, and NTP practices increased biomass yield by 18, 36, and 40%; grain yield by 28, 22, and 24%; and WUEg by 24, 26, and 24%, respectively. These results demonstrate that no-till with straw mulch and plastic mulching with either no-till or conventional tillage decrease the soil–leaf water potential gradient and soil–leaf water transfer resistance and enhance sustainable intensification of wheat production in semi-arid areas.


2019 ◽  
Vol 32 (10) ◽  
pp. 2707-2734 ◽  
Author(s):  
Sanjiv Kumar ◽  
Matthew Newman ◽  
Yan Wang ◽  
Ben Livneh

Abstract Soil moisture anomalies within the root zone (roughly, soil depths down to ~0.4 m) typically persist only a few months. Consequently, land surface–related climate predictability research has often focused on subseasonal to seasonal time scales. However, in this study of multidecadal in situ datasets and land data assimilation products, we find that root zone soil moisture anomalies can recur several or more seasons after they were initiated, indicating potential interannual predictability. Lead–lag correlations show that this recurrence often happens during one fixed season and also seems related to the greater memory of soil moisture anomalies within the layer beneath the root zone, with memory on the order of several months to over a year. That is, in some seasons, notably spring and summer when the vertical soil water potential gradient reverses sign throughout much of North America, deeper soil moisture anomalies appear to return to the surface, thereby restoring an earlier root zone anomaly that had decayed. We call this process “reemergence,” in analogy with a similar seasonally varying process (with different underlying physics) providing winter-to-winter memory to the extratropical ocean surface layer. Pronounced spatial and seasonal dependence of soil moisture reemergence is found that is frequently, but not always, robust across datasets. Also, some of its aspects appear sensitive to spatial and temporal sampling, especially within the shorter available in situ datasets, and to precipitation variability. Like its namesake, soil moisture reemergence may enhance interannual-to-decadal variability, notably of droughts. Its detailed physics and role within the climate system, however, remain to be understood.


2019 ◽  
Vol 53 (2) ◽  
pp. 407-424
Author(s):  
Ryogo Nakada ◽  
Naoki Okada ◽  
Takahisa Nakai ◽  
Katsushi Kuroda ◽  
Satoshi Nagai

2018 ◽  
Vol 115 (31) ◽  
pp. 8031-8036 ◽  
Author(s):  
Doron Shkolnik ◽  
Roye Nuriel ◽  
Maria Cristina Bonza ◽  
Alex Costa ◽  
Hillel Fromm

Ever since Darwin postulated that the tip of the root is sensitive to moisture differences and that it “transmits an influence to the upper adjoining part, which bends towards the source of moisture” [Darwin C, Darwin F (1880) The Power of Movement in Plants, pp 572–574], the signal underlying this tropic response has remained elusive. Using the FRET-based Cameleon Ca2+ sensor in planta, we show that a water potential gradient applied across the root tip generates a slow, long-distance asymmetric cytosolic Ca2+ signal in the phloem, which peaks at the elongation zone, where it is dispersed laterally and asymmetrically to peripheral cells, where cell elongation occurs. In addition, the MIZ1 protein, whose biochemical function is unknown but is required for root curvature toward water, is indispensable for generating the slow, long-distance Ca2+ signal. Furthermore, biochemical and genetic manipulations that elevate cytosolic Ca2+ levels, including mutants of the endoplasmic reticulum (ER) Ca2+-ATPase isoform ECA1, enhance root curvature toward water. Finally, coimmunoprecipitation of plant proteins and functional complementation assays in yeast cells revealed that MIZ1 directly binds to ECA1 and inhibits its activity. We suggest that the inhibition of ECA1 by MIZ1 changes the balance between cytosolic Ca2+ influx and efflux and generates the cytosolic Ca2+ signal required for water tracking.


2017 ◽  
Vol 208 ◽  
pp. 102-114 ◽  
Author(s):  
Amed Salazar-Blas ◽  
Laura Noriega-Calixto ◽  
María E. Campos ◽  
Delfeena Eapen ◽  
Tania Cruz-Vázquez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document