Response of the North Atlantic Meridional Overturning Circulation to the Greenland Ice Sheet Freshwater input in the CESM 2.1 model

Author(s):  
Carolina Ernani da Silva ◽  
Miren Vizcaino ◽  
Caroline Katsman

<p>Coupled climate models predict a weakening of the Atlantic Meridional Overturning (AMOC) circulation in the future. However, it is not clear what is the cause of the AMOC weakening. Studies have suggested that the freshwater (FW) is an important factor in the AMOC reduction. There are different sources of FW that may play a role, such as, river discharge, sea ice melt, and precipitation. Currently, due to global warming, the Greenland Ice Sheet (GrIS) melt rate is rising, which increases the amount of freshwater (ice discharge) into the ocean. Thus, it is possible that this input of freshwater would affect the ocean circulation on a regional and global scale. Hence, the GrIS freshwater cannot be neglected. The goal of this study is to understand the impact of the freshwater from GrIS on the North AMOC (NAMOC) strength in the future. We used the Community Earth System Model (CESM) version 2.1, which contains a fully coupled and an active ice sheet, to simulate an idealized greenhouse gas scenario (1% CO<sub>2</sub>). The CO<sub>2</sub> concentration is 1140 ppm at the end of the simulation. The results show that GrIS delivers, on average, about 0.062 Sv/yr of FW to the Subpolar North Atlantic Ocean. The bulk of the total freshwater input comes from the southeastern and southwestern parts of the ice sheet:  the regions where some fast-flowing marine-terminating glaciers are located (e.g. Helheim and Kangerlussuaq). The NAMOC index (maximum barotropic stream function from above 28°N and from 500 m to 5500 m depth) was calculated. It displays a fast weakening, approximately 16.7 Sv (0.11 Sv/yr), during the first 150 yrs. After that, the NAMOC reaches a stable state where the index is around 5.7 Sv (year 350). When the NAMOC index was compared to the FW from GrIS time series, we observed that change in AMOC occurs before the FW starts to increase (from year 200). Our results thus suggest that the FW input from GrIS does not cause significant changes in the AMOC strength. It is necessary to further investigate other possible causes for the strong NAMOC decline in this model.</p>

2016 ◽  
Vol 29 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng

Abstract The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC response, as well as associated oceanic heat transport, is approximately constant as the time scale of the forcing is increased further. In contrast, the response of other properties, such as hemispheric temperature or Arctic sea ice, continues to increase as the time scale of the forcing becomes progressively longer. The larger response is associated with the time integral of the anomalous oceanic heat transport at longer time scales, combined with an increased impact of radiative feedback processes. It is shown that NAO fluctuations, similar in amplitude to those observed over the last century, can modulate hemispheric temperature by several tenths of a degree.


2013 ◽  
Vol 9 (2) ◽  
pp. 935-953 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.


2021 ◽  
Author(s):  
Sophie Stolzenberger ◽  
Roelof Rietbroek ◽  
Claudia Wekerle ◽  
Bernd Uebbing ◽  
Jürgen Kusche

<p>The impact of Greenland freshwater on oceanic variables in the North Atlantic has been controversially discussed in the past. Within the framework of the German research project GROCE (Greenland Ice Sheet Ocean Interaction), we present a comprehensive study using ocean modelling results including and excluding the Greenland freshwater flux. The aim of this study is whether signatures of Greenland ice sheet melting found in ocean model simulations are visible in the observations. Therefore, we estimate changes in temperature, salinity, steric heights and sea level anomalies since the 1990s. The observational database includes altimetric and gravimetric satellite data as well as Argo floats. We will discuss similarities/differences between model simulations and observations for smaller regions around Greenland in the North Atlantic. As these experiments are available for two different horizontal resolutions, we will furthermore be able to assess the effects of an increased model resolution.</p>


2021 ◽  
Author(s):  
Brian Crow ◽  
Matthias Prange ◽  
Michael Schulz

<p>Historical estimates of the melt rate and extent of the Greenland ice sheet (GrIS) are poorly constrained, due both to incomplete understanding of relevant ice dynamics and the magnitude of forcing acting upon the ice sheet (e.g., Alley et al. 2010). Previous assessments of the Marine Isotope Stage 11 (MIS-11) interglacial period have determined it was likely one of the warmest and longest interglacial periods of the past 800 kyr, leading to melt of at least half the present-day volume of the Greenland ice sheet (Robinson et al. 2017). An enhanced Atlantic meridional overturning circulation (AMOC) is commonly cited as sustaining the anomalous warmth across the North Atlantic and Greenland (e.g., Rachmayani et al. 2017), but little is known about potential atmospheric contributions. Paleorecords from this period are sparse, and detailed climate modelling studies of this period have been heretofore very limited. The climatic conditions over Greenland and the North Atlantic region, and how they may have contributed to the melt of the GrIS during MIS-11, are therefore not well understood. By utilizing climate simulations with the Community Earth System Model (CESM), our study indicates that changes in atmospheric eddy behavior, including eddy fluxes of heat and precipitation, made significant contributions to the negative mass balance conditions over the GrIS during the MIS-11 interglacial. Thus, accounting for the effects of atmospheric feedbacks in a warmer-than-present climate is a necessary component for future analyses attempting to better constrain the extent and rate of melt of the GrIS.</p>


Ocean Science ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 1247-1264 ◽  
Author(s):  
Lena M. Schulze Chretien ◽  
Eleanor Frajka-Williams

Abstract. The Labrador Sea is one of a small number of deep convection sites in the North Atlantic that contribute to the meridional overturning circulation. Buoyancy is lost from surface waters during winter, allowing the formation of dense deep water. During the last few decades, mass loss from the Greenland ice sheet has accelerated, releasing freshwater into the high-latitude North Atlantic. This and the enhanced Arctic freshwater export in recent years have the potential to add buoyancy to surface waters, slowing or suppressing convection in the Labrador Sea. However, the impact of freshwater on convection is dependent on whether or not it can escape the shallow, topographically trapped boundary currents encircling the Labrador Sea. Previous studies have estimated the transport of freshwater into the central Labrador Sea by focusing on the role of eddies. Here, we use a Lagrangian approach by tracking particles in a global, eddy-permitting (1/12∘) ocean model to examine where and when freshwater in the surface 30 m enters the Labrador Sea basin. We find that 60 % of the total freshwater in the top 100 m enters the basin in the top 30 m along the eastern side. The year-to-year variability in freshwater transport from the shelves to the central Labrador Sea, as found by the model trajectories in the top 30 m, is dominated by wind-driven Ekman transport rather than eddies transporting freshwater into the basin along the northeast.


2016 ◽  
Vol 12 (8) ◽  
pp. 1663-1679 ◽  
Author(s):  
Nicolas Brown ◽  
Eric D. Galbraith

Abstract. It is well known that glacial periods were punctuated by abrupt climate changes, with large impacts on air temperature, precipitation, and ocean circulation across the globe. However, the long-held idea that freshwater forcing, caused by massive iceberg discharges, was the driving force behind these changes has been questioned in recent years. This throws into doubt the abundant literature on modelling abrupt climate change through “hosing” experiments, whereby the Atlantic Meridional Overturning Circulation (AMOC) is interrupted by an injection of freshwater to the North Atlantic: if some, or all, abrupt climate change was not driven by freshwater input, could its character have been very different than the typical hosed experiments? Here, we describe spontaneous, unhosed oscillations in AMOC strength that occur in a global coupled ocean–atmosphere model when integrated under a particular background climate state. We compare these unhosed oscillations to hosed oscillations under a range of background climate states in order to examine how the global imprint of AMOC variations depends on whether or not they result from external freshwater input. Our comparison includes surface air temperature, precipitation, dissolved oxygen concentrations in the intermediate-depth ocean, and marine export production. The results show that the background climate state has a significant impact on the character of the freshwater-forced AMOC interruptions in this model, with particularly marked variations in tropical precipitation and in the North Pacific circulation. Despite these differences, the first-order patterns of response to AMOC interruptions are quite consistent among all simulations, implying that the ocean–sea ice–atmosphere dynamics associated with an AMOC weakening dominate the global response, regardless of whether or not freshwater input is the cause. Nonetheless, freshwater addition leads to a more complete shutdown of the AMOC than occurs in the unhosed oscillations, with amplified global impacts, evocative of Heinrich stadials. In addition, freshwater inputs can directly impact the strength of other polar haloclines, particularly that of the Southern Ocean, to which freshwater can be transported relatively quickly after injection in the North Atlantic.


2015 ◽  
Vol 11 (5) ◽  
pp. 4669-4700 ◽  
Author(s):  
N. Brown ◽  
E. D. Galbraith

Abstract. It is well known that glacial periods were punctuated by abrupt climate changes, with large impacts on air temperature, precipitation, and ocean circulation across the globe. However, the long-held idea that freshwater forcing, caused by massive iceberg discharges, was the driving force behind these changes has been questioned in recent years. This throws into doubt the abundant literature on modelling abrupt climate change through "hosing" experiments, whereby the Atlantic Meridional Overturning Circulation (AMOC) is interrupted by an injection of freshwater to the North Atlantic: if some, or all, abrupt climate change was not driven by freshwater input, could its character have been very different than the typical hosed experiments? Here, we take advantage of a global coupled ocean–atmosphere model that exhibits spontaneous, unhosed oscillations in AMOC strength, in order to examine how the global imprint of AMOC variations depends on whether or not it is the result of external freshwater input. The results imply that, to first order, the ocean–ice–atmosphere dynamics associated with an AMOC weakening dominate the global response, regardless of whether or not freshwater input is the cause. The exception lies in the impact freshwater inputs can have on the strength of other polar haloclines, particularly the Southern Ocean, to which freshwater can be transported relatively quickly after injection in the North Atlantic.


2012 ◽  
Vol 8 (4) ◽  
pp. 3831-3869 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design but are sufficiently close in their design to be compared. All study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e. warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the Southern Ocean while others simulate a wide spread Southern Ocean warming. The relationships between the features common to most models, i.e. climate changes over the North and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


Sign in / Sign up

Export Citation Format

Share Document