scholarly journals Classification of Seismic Events with Deep Learning Strategies: Insights from the Moosfluh Landslide

Author(s):  
Nadir Dazzi ◽  
Andrea Manconi ◽  
Nikhil Prakash ◽  
Valentin Bickel

<p>Rockfalls affect steep slopes in several geographic regions. Different systems from remote to in-situ instruments are used for their detection and study. In this scenario, seismic signals produced by the detachment, bouncing, and rolling of rockfalls are being increasingly used for the detection and classification of such events. This is typically done by using different manual, semi-automatic and/or automatic signal processing strategies. In this work, we applied a new Deep Learning (DL) algorithm in order to test the performance on the automatic classification of seismic signals. We applied the method to seismic data acquired by a low-cost Raspberry Shake 1D seismometer (sampling rate 50Hz) in order to discriminate rockfall from not-rockfall events occurred at the Moosfluh active slope region in Wallis (CH). Here we present the methodology and show the results obtained on a continuous record of more than 2-years of seismic data. The performance accuracy of the DL approach reached values larger than 90%. Our results show that the application of DL strategies in this context can be very useful and save time on seismic data classification.</p>


Cataract is a degenerative condition that, according to estimations, will rise globally. Even though there are various proposals about its diagnosis, there are remaining problems to be solved. This paper aims to identify the current situation of the recent investigations on cataract diagnosis using a framework to conduct the literature review with the intention of answering the following research questions: RQ1) Which are the existing methods for cataract diagnosis? RQ2) Which are the features considered for the diagnosis of cataracts? RQ3) Which is the existing classification when diagnosing cataracts? RQ4) And Which obstacles arise when diagnosing cataracts? Additionally, a cross-analysis of the results was made. The results showed that new research is required in: (1) the classification of “congenital cataract” and, (2) portable solutions, which are necessary to make cataract diagnoses easily and at a low cost.



2018 ◽  
Vol 52 (13) ◽  
pp. 7399-7408 ◽  
Author(s):  
Silvia E. Zieger ◽  
Günter Mistlberger ◽  
Lukas Troi ◽  
Alexander Lang ◽  
Fabio Confalonieri ◽  
...  


Author(s):  
Panyawut Sri-iesaranusorn ◽  
Attawit Chaiyaroj ◽  
Chatchai Buekban ◽  
Songphon Dumnin ◽  
Ronachai Pongthornseri ◽  
...  

Surface electromyography (sEMG) is a non-invasive and straightforward way to allow the user to actively control the prosthesis. However, results reported by previous studies on using sEMG for hand and wrist movement classification vary by a large margin, due to several factors including but not limited to the number of classes and the acquisition protocol. The objective of this paper is to investigate the deep neural network approach on the classification of 41 hand and wrist movements based on the sEMG signal. The proposed models were trained and evaluated using the publicly available database from the Ninapro project, one of the largest public sEMG databases for advanced hand myoelectric prosthetics. Two datasets, DB5 with a low-cost 16 channels and 200 Hz sampling rate setup and DB7 with 12 channels and 2 kHz sampling rate setup, were used for this study. Our approach achieved an overall accuracy of 93.87 ± 1.49 and 91.69 ± 4.68% with a balanced accuracy of 84.00 ± 3.40 and 84.66 ± 4.78% for DB5 and DB7, respectively. We also observed a performance gain when considering only a subset of the movements, namely the six main hand movements based on six prehensile patterns from the Southampton Hand Assessment Procedure (SHAP), a clinically validated hand functional assessment protocol. Classification on only the SHAP movements in DB5 attained an overall accuracy of 98.82 ± 0.58% with a balanced accuracy of 94.48 ± 2.55%. With the same set of movements, our model also achieved an overall accuracy of 99.00% with a balanced accuracy of 91.27% on data from one of the amputee participants in DB7. These results suggest that with more data on the amputee subjects, our proposal could be a promising approach for controlling versatile prosthetic hands with a wide range of predefined hand and wrist movements.



Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6048
Author(s):  
Joanna Jaworek-Korjakowska ◽  
Andrzej Brodzicki ◽  
Bill Cassidy ◽  
Connah Kendrick ◽  
Moi Hoon Yap

Over the past few decades, different clinical diagnostic algorithms have been proposed to diagnose malignant melanoma in its early stages. Furthermore, the detection of skin moles driven by current deep learning based approaches yields impressive results in the classification of malignant melanoma. However, in all these approaches, the researchers do not take into account the origin of the skin lesion. It has been observed that the specific criteria for in situ and early invasive melanoma highly depend on the anatomic site of the body. To address this problem, we propose a deep learning architecture based framework to classify skin lesions into the three most important anatomic sites, including the face, trunk and extremities, and acral lesions. In this study, we take advantage of pretrained networks, including VGG19, ResNet50, Xception, DenseNet121, and EfficientNetB0, to calculate the features with an adjusted and densely connected classifier. Furthermore, we perform in depth analysis on database, architecture, and result regarding the effectiveness of the proposed framework. Experiments confirm the ability of the developed algorithms to classify skin lesions into the most important anatomical sites with 91.45% overall accuracy for the EfficientNetB0 architecture, which is a state-of-the-art result in this domain.



2021 ◽  
Vol 924 (1) ◽  
pp. 012022
Author(s):  
Y Hendrawan ◽  
B Rohmatulloh ◽  
I Prakoso ◽  
V Liana ◽  
M R Fauzy ◽  
...  

Abstract Tempe is a traditional food originating from Indonesia, which is made from the fermentation process of soybean using Rhizopus mold. The purpose of this study was to classify three quality levels of soybean tempe i.e., fresh, consumable, and non-consumable using a convolutional neural network (CNN) based deep learning. Four types of pre-trained networks CNN were used in this study i.e. SqueezeNet, GoogLeNet, ResNet50, and AlexNet. The sensitivity analysis showed the highest quality classification accuracy of soybean tempe was 100% can be achieved when using AlexNet with SGDm optimizer and learning rate of 0.0001; GoogLeNet with Adam optimizer and learning rate 0.0001, GoogLeNet with RMSProp optimizer, and learning rate 0.0001, ResNet50 with Adam optimizer and learning rate 0.00005, ResNet50 with Adam optimizer and learning rate 0.0001, and SqueezeNet with RSMProp optimizer and learning rate 0.0001. In further testing using testing-set data, the classification accuracy based on the confusion matrix reached 98.33%. The combination of the CNN model and the low-cost digital commercial camera can later be used to detect the quality of soybean tempe with the advantages of being non-destructive, rapid, accurate, low-cost, and real-time.



Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1406
Author(s):  
Amin Taheri-Garavand ◽  
Amin Nasiri ◽  
Dimitrios Fanourakis ◽  
Soodabeh Fatahi ◽  
Mahmoud Omid ◽  
...  

On-time seed variety recognition is critical to limit qualitative and quantitative yield loss and asynchronous crop production. The conventional method is a subjective and error-prone process, since it relies on human experts and usually requires accredited seed material. This paper presents a convolutional neural network (CNN) framework for automatic identification of chickpea varieties by using seed images in the visible spectrum (400–700 nm). Two low-cost devices were employed for image acquisition. Lighting and imaging (background, focus, angle, and camera-to-sample distance) conditions were variable. The VGG16 architecture was modified by a global average pooling layer, dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual features of the diverse chickpea varieties and recognizing them according to these features was conceivable by the obtained model. A five-fold cross-validation was performed to evaluate the uncertainty and predictive efficiency of the CNN model. The modified deep learning model was able to recognize different chickpea seed varieties with an average classification accuracy of over 94%. In addition, the proposed vision-based model was very robust in seed variety identification, and independent of image acquisition device, light environment, and imaging settings. This opens the avenue for the extension into novel applications using mobile phones to acquire and process information in situ. The proposed procedure derives possibilities for deployment in the seed industry and mobile applications for fast and robust automated seed identification practices.



2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Antonietta M. Esposito ◽  
Luca D’Auria ◽  
Flora Giudicepietro ◽  
Teresa Caputo ◽  
Marcello Martini

<p>The computing techniques currently available for the seismic monitoring allow advanced analysis. However, the correct event classification remains a critical aspect for the reliability of real time automatic analysis. Among the existing methods, neural networks may be considered efficient tools for detection and discrimination, and may be integrated into intelligent systems for the automatic classification of seismic events. In this work we apply an unsupervised technique for analysis and classification of seismic signals recorded in the Mt. Vesuvius area in order to improve the automatic event detection. The examined dataset contains about 1500 records divided into four typologies of events: earthquakes, landslides, artificial explosions, and “other” (any other signals not included in the previous classes). First, the Linear Predictive Coding (LPC) and a waveform parametrization have been applied to achieve a significant and compact data encoding. Then, the clustering is obtained using a Self-Organizing Map (SOM) neural network which does not require an a-priori classification of the seismic signals, groups those with similar structures, providing a simple framework for understanding the relationships between them. The resulting SOM map is separated into different areas, each one containing the events of a defined type. This means that the SOM discriminates well the four classes of seismic signals. Moreover, the system will classify a new input pattern depending on its position on the SOM map. The proposed approach can be an efficient instrument for the real time automatic analysis of seismic data, especially in the case of possible volcanic unrest.</p>



2021 ◽  
Vol 924 (1) ◽  
pp. 012009
Author(s):  
Y Hendrawan ◽  
B Rohmatulloh ◽  
I Prakoso ◽  
V Liana ◽  
M R Fauzy ◽  
...  

Abstract Chili (Capsicum annuum L.) is the source of various nutraceutical small molecules, such as ascorbic acid (vitamin C), carotenoids, tocopherols, flavonoids, and capsinoids. The purpose of this study was to classify the maturity stage of large green chili into three maturity levels, i.e. maturity 1 (maturity index 1 / 34 days after anthesis (DAA)), maturity 2 (maturity index 3 / 47 DAA), and maturity 3 (maturity index 5 / 60 DAA) by using convolutional neural networks (CNN) based deep learning and computer vision. Four types of pre-trained networks CNN were used in this study i.e. SqueezeNet, GoogLeNet, ResNet50, and AlexNet. From the overall sensitivity analysis results, the highest maturity classification accuracy of large green chili was 93.89% which can be achieved when using GoogLeNet with SGDmoptimizer and learning rate of 0.00005. However, in further testing using testing-set data, the highest classification accuracy based on confusion matrix was reaching 91.27% when using the CNN SqueezeNet model with RMSProp optimizer and a learning rate of 0.0001. The combination of the CNN model and the low-cost digital commercial camera can later be used to detect the maturity of large green chili with the advantages of being non-destructive, rapid, accurate, low-cost, and real-time.



Author(s):  
Juan S. Rey ◽  
Wen Li ◽  
Alexander J. Bryer ◽  
Hagan Beatson ◽  
Christian Lantz ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document