Retrieval of tropospheric BrO columns from TROPOMI and their validation using MAX-DOAS measurements in Ny-Ålesund

Author(s):  
Sora Seo ◽  
Andreas Richter ◽  
Anne-M. Blechschmidt ◽  
Ilias Bougoudis ◽  
Folkard Wittrock ◽  
...  

<p>Bromine compounds play an important role in atmospheric chemistry with respect to ozone chemistry and the resulting oxidation capacity. Large amounts of reactive bromine can be released by an autocatalytic heterogeneous mechanism called “bromine explosion”, and plumes of enhanced bromine monoxide (BrO) have been observed over polar sea ice regions by satellite measurements in spring. These enhancements of BrO columns result from increases in stratospheric or tropospheric bromine columns or both. As nadir-viewing UV-visible spectrometers have limited vertical resolution, it is not straight-forward to separate total BrO columns into tropospheric and stratospheric partial columns using satellite data.</p><p>In this study, an algorithm for tropospheric BrO retrieval from satellite measurements including TROPOMI, which provides much improved spatial resolution, was developed. The retrieval algorithm is based on the Differential Optical Absorption Spectroscopy (DOAS) technique and three different stratospheric correction methods were tested based on: output from a 3D atmospheric chemistry model, a climatology of stratospheric BrO profiles, and an empirical multiple linear regression model to separate the tropospheric partial column from the total column.</p><p>Retrieved tropospheric BrO columns from satellite measurements were compared with ground-based MAX-DOAS BrO observations at the NDACC station in Ny-Ålesund. The comparisons between ground-based and satellite measurements of tropospheric BrO show good agreement in both time-series and scatter plots, demonstrating the satellite retrieval algorithm is valid and applicable to study bromine release in the tropospheric layer. In particular, TROPOMI shows improved validation results for short distance collection compared to previous satellite data, which suggests the applicability of high-resolution satellite data on small-scale bromine explosion events observed during the MOSAiC campaign.</p>

2009 ◽  
Vol 9 (11) ◽  
pp. 3641-3662 ◽  
Author(s):  
D. Chen ◽  
B. Zhou ◽  
S. Beirle ◽  
L. M. Chen ◽  
T. Wagner

Abstract. Zenith-sky scattered sunlight observations using differential optical absorption spectroscopy (DOAS) technique were carried out in Shanghai, China (31.3° N, 121.5° E) since December 2006. At this polluted urban site, the measurements provided NO2 total columns in the daytime. Here, we present a new method to extract time series of tropospheric vertical column densities (VCDs) of NO2 from these observations. The derived tropospheric NO2 VCDs are important quantities for the estimation of emissions and for the validation of satellite observations. Our method makes use of assumptions on the relative NO2 height profiles and the diurnal variation of stratospheric NO2 VCDs. The main error sources arise from the uncertainties in the estimated stratospheric slant column densities (SCDs) and the determination of tropospheric NO2 air mass factor (AMF). For a polluted site like Shanghai, the accuracy of our method is conservatively estimated to be <25% for solar zenith angle (SZA) lower than 70°. From simultaneously performed long-path DOAS measurements, the NO2 surface concentrations at the same site were observed and the corresponding tropospheric NO2 VCDs were estimated using the assumed seasonal NO2 profiles in the planetary boundary layer (PBL). By making a comparison between the tropospheric NO2 VCDs from zenith-sky and long-path DOAS measurements, it is found that the former provides more realistic information about total tropospheric pollution than the latter, so it's more suitable for satellite data validation. A comparison between the tropospheric NO2 VCDs from ground-based zenith-sky measurements and SCIAMACHY was also made. Satellite validation for a strongly polluted area is highly needed, but exhibits also a great challenge. Our comparison shows good agreement, considering in particular the different spatial resolutions between the two measurements. Remaining systematic deviations are most probably related to the uncertainties of satellite data caused by the assumptions on aerosol properties as well as the layer heights of aerosols and NO2.


2014 ◽  
Vol 7 (3) ◽  
pp. 3021-3073 ◽  
Author(s):  
M. Grossi ◽  
P. Valks ◽  
D. Loyola ◽  
B. Aberle ◽  
S. Slijkhuis ◽  
...  

Abstract. The knowledge of the total column water vapour (TCWV) global distribution is fundamental for climate analysis and weather monitoring. In this work, we present the retrieval algorithm used to derive the operational TCWV from the GOME-2 sensors and perform an extensive inter-comparison and validation in order to estimate their absolute accuracy and long-term stability. We use the recently reprocessed data sets retrieved by the GOME-2 instruments aboard EUMETSAT's MetOp-A and MetOp-B satellites and generated by DLR in the framework of the O3M-SAF using the GOME Data Processor (GDP) version 4.7. The retrieval algorithm is based on a classical Differential Optical Absorption Spectroscopy (DOAS) method and combines H2O/O2 retrieval for the computation of the trace gas vertical column density. We introduce a further enhancement in the quality of the H2O column by optimizing the cloud screening and developing an empirical correction in order to eliminate the instrument scan angle dependencies. We evaluate the overall consistency between about 8 months measurements from the newer GOME-2 instrument on the MetOp-B platform with the GOME-2/MetOp-A data in the overlap period. Furthermore, we compare GOME-2 results with independent TCWV data from ECMWF and with SSMIS satellite measurements during the full period January 2007–August 2013 and we perform a validation against the combined SSM/I + MERIS satellite data set developed in the framework of the ESA DUE GlobVapour project. We find global mean biases as small as ± 0.03 g cm−2 between GOME-2A and all other data sets. The combined SSM/I-MERIS sample is typically drier than the GOME-2 retrievals (−0.005 g cm−2), while on average GOME-2 data overestimate the SSMIS measurements by only 0.028 g cm−2. However, the size of some of these biases are seasonally dependent. Monthly average differences can be as large as 0.1 g cm−2, based on the analysis against SSMIS measurements, but are not as evident in the validation with the ECMWF and the SSM/I + MERIS data. Studying two exemplary months, we estimate regional differences and identify a very good agreement between GOME-2 total columns and all three independent data sets, especially for land areas, although some discrepancies over ocean and over land areas with high humidity and a relatively large surface albedo are also present.


2008 ◽  
Vol 8 (3) ◽  
pp. 505-522 ◽  
Author(s):  
G. L. Manney ◽  
W. H. Daffer ◽  
K. B. Strawbridge ◽  
K. A. Walker ◽  
C. D. Boone ◽  
...  

Abstract. The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns were conducted at Eureka (80° N, 86° W) during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Aura Microwave Limb Sounder (MLS), along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high-latitude temperatures throughout the winters. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex in late January through March 2006 compared to that in 2005.


Author(s):  
V. P. Ustinov ◽  
E. L. Baranova ◽  
K. N. Visheratin ◽  
M. I. Grachev ◽  
A. V. Kalsin

The results of systematic (2003–2017) measurements of the total content and the volume mixing ratio of CO at Novolazarevskaya station with a spectrometer with a resolution of 0.2 cm– 1 are presented. The inverse problem of determining the total CO content, as well as interfering gases (H2O and N2O), was solved using the SFIT4 software package. Data analysis showed that over the measurement period the average total CO content at Novolazarevskaya amounted to (8 ± 2) 1017 molec/cm2, and the average volume mixing ratio amounted to (37 ± 8) ppb. The obtained data are compared with variations in the total content of CO in Arrival-Heights station, with MOPITT satellite data, as well as with surface values of CO concentration at Syova station. The maximum values of CO are observed in September, the minimum — in January–February. For all the considered series, the trends are insignificant, while there are periods of increased CO content (2010). In recent years (2014–2017) there is a tendency towards an increase in the minimum values of CO. For  Novolazarevskaya and  Arrival-Heights satellite data are characterized by the excess of over ground data, amounting to 19% and 14%, respectively, while there is a seasonal dependence of the deviation with the minimum in December–January. Surface measurements of the total CO content are in fairly good agreement at Novolazarevskaya and Arrival-Heights, and since 2010 the average deviation is 2.4%. The average value of the concentration of CO on Syova 51 ppb is higher than the average volume mixing ratio at Novolazarevskaya. According to the spectral, wavelet and composite analyzes, in all the considered series there are oscillations in the range of 6–45 months with closely coinciding periods and phases.


2010 ◽  
Vol 10 (14) ◽  
pp. 6569-6581 ◽  
Author(s):  
J. Kuttippurath ◽  
F. Goutail ◽  
J.-P. Pommereau ◽  
F. Lefèvre ◽  
H. K. Roscoe ◽  
...  

Abstract. The passive tracer method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the ozone depletion can be estimated within an accuracy of ~4%. The method is then applied to the ground-based observations from Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, South Pole, Syowa, and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the ten-day boxcar average of the vortex mean ozone column loss deduced from the ground-based stations was about 55±5% in 2005–2009. The ozone loss computed from the ground-based measurements is in very good agreement with those derived from satellite measurements (OMI and SCIAMACHY) and model simulations (REPROBUS and SLIMCAT), where the differences are within ±3–5%. The historical ground-based total ozone observations in October show that the depletion started in the late 1970s, reached a maximum in the early 1990s and stabilised afterwards due to saturation. There is no indication of ozone recovery yet. At southern mid-latitudes, a reduction of 20–50% is observed for a few days in October–November at the newly installed Rio Gallegos station. Similar depletion of ozone is also observed episodically during the vortex overpasses at Kerguelen in October–November and at Macquarie Island in July–August of the recent winters. This illustrates the significance of measurements at the edges of Antarctica.


2021 ◽  
Author(s):  
Moritz Schöne ◽  
Holger Sihler ◽  
Simon Warnach ◽  
Christian Borger ◽  
Steffen Beirle ◽  
...  

&lt;p&gt;Halogen radicals can drastically alter the atmospheric chemistry. In the polar regions, this is made evident by the ozone desctruction in the stratosphere (ozone hole) but also by localized destruction of boundary layer ozone during polar springs. These recurrent episodes of catalytic ozone depletion are caused by enhanced concentrations of reactive bromine compounds. The proposed mechanism by which these are released into the atmosphere is called bromine explosion - reactive bromine is formed autocatalytically from the condensed phase.&lt;/p&gt;&lt;p&gt;The spatial resolution of S-5P/TROPOMI of up to 3,5 km x 5.5 km&amp;#178; allows improved localization and a finer specification of these events compared to previous satellite measurements. Together with the better than daily coverage over the polar regions, this allows investigations of the spatiotemporal variability of enhanced BrO levels and their relation to different possible bromine sources and release mechanisms.&lt;/p&gt;&lt;p&gt;Here, we present tropospheric BrO column densities retrieved from TROPOMI measurements using Differential Optical Absorption Spectroscopy (DOAS). We developed an algorithm capable of separating tropospheric and stratospheric partial columns without further external (model) input only relying on measured NO&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;&lt;/sup&gt;and O&lt;sub&gt;3&lt;/sub&gt;, by utilizing a modified version of a k-means clustering and other methods from statistical data analysis.&lt;/p&gt;&lt;p&gt;Selected events from the polar springs in 2019 and 2020 are further analyzed and discussed with regards to sea ice coverage and meteorological influences.&lt;/p&gt;


2021 ◽  
Vol 14 (8) ◽  
pp. 5771-5789
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and the retrieval algorithm are presented. The retrieval employs the weighting function fitting approach (WFFA), a modification of the weighting function differential optical absorption spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.3 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the operational product of OMPS-NM indicates a mean bias of around zero. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS shows a persistent negative bias of about −0.6 % for OFFL and −2.5 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


2005 ◽  
Vol 5 (1) ◽  
pp. 847-862
Author(s):  
T. Warneke ◽  
R. de Beek ◽  
M. Buchwitz ◽  
J. Notholt ◽  
A. Schulz ◽  
...  

Abstract. CO, CH4, N2O and CO2 were retrieved from high resolution solar absorption spectra obtained during a ship cruise from Capetown to Bremerhaven in January/February 2003 by Fourier Transform Infrared (FTIR) spectroscopy. Precisions of better than 0.5% for the column averaged volume mixing ratios (VMR) of CH4 and CO2 are achieved using of O2 as a reference gas. Shipborne FTIR-measurements of CO and data from SCIAMACHY/ENVISAT retrieved by the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) retrieval algorithm show qualitatively the same latitudinal variations. WFM-DOAS data of CH4, N2O and CO2 measured over sea exhibit a great spread. The spread is significantly reduced for satellite measurements over land and a reasonable agreement can be obtained if the shipborne data is compared with the closest SCIAMACHY measurements over land. The number of comparisons is too small to draw conclusions. However, by including only WFM-DOAS data with small errors the shipborne and WFM-DOAS data compare within 5% for CH4 and CO2 and within 30% for N2O.


2008 ◽  
Vol 8 (6) ◽  
pp. 1483-1499 ◽  
Author(s):  
M. I. Hegglin ◽  
C. D. Boone ◽  
G. L. Manney ◽  
T. G. Shepherd ◽  
K. A. Walker ◽  
...  

Abstract. CO, O3, and H2O data in the upper troposphere/lower stratosphere (UTLS) measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 satellite are validated using aircraft and ozonesonde measurements. In the UTLS, validation of chemical trace gas measurements is a challenging task due to small-scale variability in the tracer fields, strong gradients of the tracers across the tropopause, and scarcity of measurements suitable for validation purposes. Validation based on coincidences therefore suffers from geophysical noise. Two alternative methods for the validation of satellite data are introduced, which avoid the usual need for coincident measurements: tracer-tracer correlations, and vertical tracer profiles relative to tropopause height. Both are increasingly being used for model validation as they strongly suppress geophysical variability and thereby provide an "instantaneous climatology". This allows comparison of measurements between non-coincident data sets which yields information about the precision and a statistically meaningful error-assessment of the ACE-FTS satellite data in the UTLS. By defining a trade-off factor, we show that the measurement errors can be reduced by including more measurements obtained over a wider longitude range into the comparison, despite the increased geophysical variability. Applying the methods then yields the following upper bounds to the relative differences in the mean found between the ACE-FTS and SPURT aircraft measurements in the upper troposphere (UT) and lower stratosphere (LS), respectively: for CO ±9% and ±12%, for H2O ±30% and ±18%, and for O3 ±25% and ±19%. The relative differences for O3 can be narrowed down by using a larger dataset obtained from ozonesondes, yielding a high bias in the ACE-FTS measurements of 18% in the UT and relative differences of ±8% for measurements in the LS. When taking into account the smearing effect of the vertically limited spacing between measurements of the ACE-FTS instrument, the relative differences decrease by 5–15% around the tropopause, suggesting a vertical resolution of the ACE-FTS in the UTLS of around 1 km. The ACE-FTS hence offers unprecedented precision and vertical resolution for a satellite instrument, which will allow a new global perspective on UTLS tracer distributions.


2005 ◽  
Vol 5 (8) ◽  
pp. 2029-2034 ◽  
Author(s):  
T. Warneke ◽  
R. de Beek ◽  
M. Buchwitz ◽  
J. Notholt ◽  
A. Schulz ◽  
...  

Abstract. CO, CH4, N2O and CO2 were retrieved from high resolution solar absorption spectra obtained during a ship cruise from Capetown to Bremerhaven in January/February 2003 by Fourier Transform Infrared (FTIR) spectroscopy. Precisions of better than 0.5% for the column averaged volume mixing ratios (VMR) of CH4 and CO2 are achieved using of O2 as a reference gas. Shipborne FTIR-measurements of CO and data from SCIAMACHY/ENVISAT retrieved by the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) retrieval algorithm show qualitatively the same latitudinal variations. WFM-DOAS data of CH4, N2O and CO2 measured over sea exhibit a great spread. The spread is significantly reduced for satellite measurements over land and a reasonable agreement can be obtained if the shipborne data are compared with the closest SCIAMACHY measurements over land. The number of comparisons is too small to draw conclusions. However, by including only WFM-DOAS data with small errors the shipborne and WFM-DOAS data compare within 5% for CH4 and CO2 and within 30% for N2O.


Sign in / Sign up

Export Citation Format

Share Document