scholarly journals Shipborne solar absorption measurements of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O and CO and comparison with SCIAMACHY WFM-DOAS retrievals

2005 ◽  
Vol 5 (1) ◽  
pp. 847-862
Author(s):  
T. Warneke ◽  
R. de Beek ◽  
M. Buchwitz ◽  
J. Notholt ◽  
A. Schulz ◽  
...  

Abstract. CO, CH4, N2O and CO2 were retrieved from high resolution solar absorption spectra obtained during a ship cruise from Capetown to Bremerhaven in January/February 2003 by Fourier Transform Infrared (FTIR) spectroscopy. Precisions of better than 0.5% for the column averaged volume mixing ratios (VMR) of CH4 and CO2 are achieved using of O2 as a reference gas. Shipborne FTIR-measurements of CO and data from SCIAMACHY/ENVISAT retrieved by the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) retrieval algorithm show qualitatively the same latitudinal variations. WFM-DOAS data of CH4, N2O and CO2 measured over sea exhibit a great spread. The spread is significantly reduced for satellite measurements over land and a reasonable agreement can be obtained if the shipborne data is compared with the closest SCIAMACHY measurements over land. The number of comparisons is too small to draw conclusions. However, by including only WFM-DOAS data with small errors the shipborne and WFM-DOAS data compare within 5% for CH4 and CO2 and within 30% for N2O.

2005 ◽  
Vol 5 (8) ◽  
pp. 2029-2034 ◽  
Author(s):  
T. Warneke ◽  
R. de Beek ◽  
M. Buchwitz ◽  
J. Notholt ◽  
A. Schulz ◽  
...  

Abstract. CO, CH4, N2O and CO2 were retrieved from high resolution solar absorption spectra obtained during a ship cruise from Capetown to Bremerhaven in January/February 2003 by Fourier Transform Infrared (FTIR) spectroscopy. Precisions of better than 0.5% for the column averaged volume mixing ratios (VMR) of CH4 and CO2 are achieved using of O2 as a reference gas. Shipborne FTIR-measurements of CO and data from SCIAMACHY/ENVISAT retrieved by the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) retrieval algorithm show qualitatively the same latitudinal variations. WFM-DOAS data of CH4, N2O and CO2 measured over sea exhibit a great spread. The spread is significantly reduced for satellite measurements over land and a reasonable agreement can be obtained if the shipborne data are compared with the closest SCIAMACHY measurements over land. The number of comparisons is too small to draw conclusions. However, by including only WFM-DOAS data with small errors the shipborne and WFM-DOAS data compare within 5% for CH4 and CO2 and within 30% for N2O.


2004 ◽  
Vol 4 (6) ◽  
pp. 7217-7279 ◽  
Author(s):  
M. Buchwitz ◽  
R. de Beek ◽  
J. P. Burrows ◽  
H. Bovensmann ◽  
T. Warneke ◽  
...  

Abstract. The remote sensing of the atmospheric greenhouse gases methane (CH4) and carbon dioxide (CO2) in the troposphere from instrumentation aboard satellites is a new area of research. In this manuscript, results obtained from observations of the up-welling radiation in the near-infrared by SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY), which flies on board ENVISAT, are presented. Vertical columns of CH4, CO2 and oxygen (O2) have been retrieved and the (air or) O2-normalized CH4 and CO2 column amounts, the dry air column averaged mixing ratios XCH4 and XCO2 derived. In this manuscript the first results, obtained by using the version 0.4 of the Weighting Function Modified (WFM) DOAS retrieval algorithm applied to SCIAMACHY data, are described and compared with global models. This is an important step in assessing the quality and information content of the data products derived from SCIAMACHY observations. This study investigates the behaviour of CO2 and CH4 in the period from January to October 2003. The SCIAMACHY greenhouse gas column amounts and their mixing ratios for cloud free scenes over land are shown to be in reasonable agreement with models. Over the ocean, as a result of the lower surface spectral reflectance and resultant low signal to noise with the exception of sun glint conditions, the accuracy of the individual data products is poorer. The measured methane column amounts agree with the model columns within a few percent. The inter-hemispheric difference of the methane mixing ratios, determined from single day cloud free measurements over land, is in the range 30–110 ppbv and in reasonable agreement with the corresponding model data (48–71 ppbv). For the set of individual measurements the standard deviations of the difference with respect to the models are in the range ~100–200 ppbv (5–10%) and ±14.4 ppmv (3.9%) for XCH


2021 ◽  
Author(s):  
Moritz Schöne ◽  
Holger Sihler ◽  
Simon Warnach ◽  
Christian Borger ◽  
Steffen Beirle ◽  
...  

&lt;p&gt;Halogen radicals can drastically alter the atmospheric chemistry. In the polar regions, this is made evident by the ozone desctruction in the stratosphere (ozone hole) but also by localized destruction of boundary layer ozone during polar springs. These recurrent episodes of catalytic ozone depletion are caused by enhanced concentrations of reactive bromine compounds. The proposed mechanism by which these are released into the atmosphere is called bromine explosion - reactive bromine is formed autocatalytically from the condensed phase.&lt;/p&gt;&lt;p&gt;The spatial resolution of S-5P/TROPOMI of up to 3,5 km x 5.5 km&amp;#178; allows improved localization and a finer specification of these events compared to previous satellite measurements. Together with the better than daily coverage over the polar regions, this allows investigations of the spatiotemporal variability of enhanced BrO levels and their relation to different possible bromine sources and release mechanisms.&lt;/p&gt;&lt;p&gt;Here, we present tropospheric BrO column densities retrieved from TROPOMI measurements using Differential Optical Absorption Spectroscopy (DOAS). We developed an algorithm capable of separating tropospheric and stratospheric partial columns without further external (model) input only relying on measured NO&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;&lt;/sup&gt;and O&lt;sub&gt;3&lt;/sub&gt;, by utilizing a modified version of a k-means clustering and other methods from statistical data analysis.&lt;/p&gt;&lt;p&gt;Selected events from the polar springs in 2019 and 2020 are further analyzed and discussed with regards to sea ice coverage and meteorological influences.&lt;/p&gt;


2005 ◽  
Vol 5 (4) ◽  
pp. 1015-1025 ◽  
Author(s):  
M. Coldewey-Egbers ◽  
M. Weber ◽  
L. N. Lamsal ◽  
R. de Beek ◽  
M. Buchwitz ◽  
...  

Abstract. A new algorithm approach called Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS) is presented which has been developed to retrieve total ozone columns from nadir observations of the Global Ozone Monitoring Experiment. By fitting the vertically integrated ozone weighting function rather than ozone cross-section to the sun-normalized radiances, a direct retrieval of vertical column amounts is possible. The new WFDOAS approach takes into account the slant path wavelength modulation that is usually neglected in the standard DOAS approach using single airmass factors. This paper focuses on the algorithm description and error analysis, while in a companion paper by Weber et al. (2004) a detailed validation with groundbased measurements is presented. For the first time several auxiliary quantities directly derived from the GOME spectral range such as cloud-top-height and cloud fraction (O2-A band) and effective albedo using the Lambertian Equivalent Reflectivity (LER) near 377nm are used in combination as input to the ozone retrieval. In addition the varying ozone dependent contribution to the Raman correction in scattered light known as Ring effect has been included. The molecular ozone filling-in that is accounted for in the new algorithm has the largest contribution to the improved total ozone results from WFDOAS compared to the operational product. The precision of the total ozone retrieval is estimated to be better than 3% for solar zenith angles below 80°.


2021 ◽  
Vol 14 (8) ◽  
pp. 5771-5789
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and the retrieval algorithm are presented. The retrieval employs the weighting function fitting approach (WFFA), a modification of the weighting function differential optical absorption spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.3 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the operational product of OMPS-NM indicates a mean bias of around zero. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS shows a persistent negative bias of about −0.6 % for OFFL and −2.5 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


2004 ◽  
Vol 4 (4) ◽  
pp. 4915-4944
Author(s):  
M. Coldewey-Egbers ◽  
M. Weber ◽  
L. N. Lamsal ◽  
R. de Beek ◽  
M. Buchwitz ◽  
...  

Abstract. A new algorithm approach called Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS) is presented which has been developed to retrieve total ozone columns from nadir observations of the Global Ozone Monitoring Experiment. By fitting the vertically integrated ozone weighting function rather than ozone cross-section to the sun-normalized radiances, a direct retrieval of vertical column amounts is possible. The new WFDOAS approach takes into account the slant path wavelength modulation that is usually neglected in the standard DOAS approach using single airmass factors. This paper focuses on the algorithm description and error analysis, while in a companion paper by Weber et al. (2004) a detailed validation with groundbased measurements is presented. For the first time several auxiliary quantities directly derived from the GOME spectral range such as cloud-top-height and cloud fraction (O2-A band) and effective albedo using the Lambertian Equivalent Reflectivity (LER) near 377 nm are used in combination as input to the ozone retrieval. In addition the varying ozone dependent contribution to the Raman correction in scattered light known as Ring effect has been included. Detailed investigations have been performed concerning the influence of the molecular ozone filling-in as part of the Ring effect. The precision of the total ozone retrieval is estimated to be better than 3% for solar zenith angles below 80°.


2014 ◽  
Vol 7 (6) ◽  
pp. 1723-1744 ◽  
Author(s):  
B. Dils ◽  
M. Buchwitz ◽  
M. Reuter ◽  
O. Schneising ◽  
H. Boesch ◽  
...  

Abstract. Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4–2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH4, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH4 precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively.


2006 ◽  
Vol 6 (11) ◽  
pp. 3517-3534 ◽  
Author(s):  
M. P. Barkley ◽  
U. Frieß ◽  
P. S. Monks

Abstract. Satellite measurements of atmospheric CO2 concentrations are a rapidly evolving area of scientific research which can help reduce the uncertainties in the global carbon cycle fluxes and provide insight into surface sources and sinks. One of the emerging CO2 measurement techniques is a relatively new retrieval algorithm called Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) that has been developed by Buchwitz et al. (2000). This algorithm is designed to measure the total columns of CO2 (and other greenhouse gases) through the application to spectral measurements in the near infrared (NIR), made by the SCIAMACHY instrument on-board ENVISAT. The algorithm itself is based on fitting the logarithm of a model reference spectrum and its derivatives to the logarithm of the ratio of a measured nadir radiance and solar irradiance spectrum. In this work, a detailed error assessment of this technique has been conducted and it has been found necessary to include suitable a priori information within the retrieval in order to minimize the errors on the retrieved CO2 columns. Hence, a more flexible implementation of the retrieval technique, called Full Spectral Initiation (FSI) WFM-DOAS, has been developed which generates a reference spectrum for each individual SCIAMACHY observation using the estimated properties of the atmosphere and surface at the time of the measurement. Initial retrievals over Siberia during the summer of 2003 show that the measured CO2 columns are not biased from the input a priori data and that whilst the monthly averaged CO2 distributions contain a high degree of variability, they also contain interesting spatial features.


2004 ◽  
Vol 4 (3) ◽  
pp. 2867-2904 ◽  
Author(s):  
F. Hendrick ◽  
B. Barret ◽  
M. Van Roozendael ◽  
H. Boesch ◽  
A. Butz ◽  
...  

Abstract. A retrieval algorithm based on the Optimal Estimation Method (OEM) has been developed in order to provide vertical distributions of NO2 in the stratosphere from ground-based (GB) zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change) stations of Harestua (60° N, 10° E) and Andøya (69.3° N, 16.1° E) in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO2 vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement – generally better than 25% – has been found with the SAOZ (Système d'Analyse par Observations Zénithales) and DOAS (Differential Optical Absorption Spectroscopy) balloon data. A similar agreement has been reached with correlative satellite data from HALogen Occultation Experiment (HALOE) and Polar Ozone and Aerosol Measurement (POAM) III instruments above 25 km of altitude. Below 25 km, a systematic overestimation of our retrieved profiles – by up to 50% in some cases – has been observed by both HALOE and POAM III, pointing out the limitation of the satellite solar occultation technique at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes.


2021 ◽  
Author(s):  
Andrea Orfanoz-Cheuquelaf ◽  
Alexei Rozanov ◽  
Mark Weber ◽  
Carlo Arosio ◽  
Annette Ladstätter-Weißenmayer ◽  
...  

Abstract. A scientific total ozone column product from the Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) observations and its retrieval algorithm are presented. The retrieval employs the Weighting Function Fitting Approach (WFFA), a modification of the Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS) technique. The total ozone columns retrieved with WFFA are in very good agreement with other datasets. A mean difference of 0.6 % with respect to ground-based Brewer and Dobson measurements is observed. Seasonal and latitudinal variations are well represented and in agreement with other satellite datasets. The comparison of our product with the scientific product of OMPS-NM indicate a mean bias of around 0.1 %. The comparison with the Tropospheric Monitoring Instrument products (S5P/TROPOMI) OFFL and WFDOAS, shows a persistent negative bias of about −0.5 % for OFFL and –2 % for WFDOAS. Larger differences are only observed in the polar regions. This data product is intended to be used for trend analysis and the retrieval of tropospheric ozone combined with the OMPS limb profiler data.


Sign in / Sign up

Export Citation Format

Share Document