Nonlinear long-period tidal forcing with application to ENSO, QBO, and Chandler wobble

Author(s):  
Paul Pukite

<p>Apart from its known impact to variations in the Earth’s length-of-day (LOD) variations, the role of long-period tidal forcing cycles in geophysical behaviours has remained elusive. To explore this further, tidal forcing is considered as a causative mechanisms to the following cyclic processes: El Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO), and the Chandler wobble. Annualized impulse reponse formulations and nonlinear solutions to Navier-Stokes-based Laplace's Tidal Equations  are required to make the connection to the observed patterns as the underlying periods are not strictly commensurate in relation to harmonics of the tidal cycles.  If equatorial climate phenomena such as QBO and ENSO can be explained as deterministic processes then the behavior that may be predictable. This paper suggests that QBO, ENSO, and the Chandler wobble may share a common origin of lunar and solar tidal forcing, but with differences arising due to global symmetry considerations. Through analytical approximations of nonlinear fluid dynamics and detailed time-series analysis, matching quantitative models of these behaviors can be shown.</p>

2020 ◽  
Author(s):  
Paul R. Pukite

Abstract. Apart from its known impact to variations in the Earth's length-of-day (LOD) variations, the role of long-period tidal forcing cycles in geophysical behaviours has remained relatively unexplored. To extend this idea, tidal forcing is considered as a causative mechanisms to the following cyclic processes: El Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO), and the Chandler wobble. Subtle mathematical insights are required to make the connection to the observed patterns as the underlying periods are not strictly commensurate in relation to harmonics of the tidal cycles. There are three cyclic perturbations in the Earth's behavior that scientists have had difficulty pinning down. The actual understanding is so poor that there is no clear consensus for any of the behaviors, and the actual mechanism in each is considered an as-yet unresolved mystery. One behavior has to do with an oceanic cycle (ENSO), one with an atmospheric cycle (QBO), and one with the solid Earth (Chandler wobble). A consensus agreement is lacking in each of these three behaviors in spite of the fact that there may be an obvious yet mathematically-challenging common-mode cause tying them together. The challenge lies in simplifying the math of fluid dynamics and applying the appropriate signal processing techniques. With that, an elegant analytical framework can be applied to perhaps solve the mystery once and for all.


2021 ◽  
Author(s):  
Alice Portal ◽  
Paolo Ruggieri ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Daniela I. V. Domeisen ◽  
...  

AbstractThe predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño–Southern Oscillation (ENSO) and underestimates the influence of the Quasi–Biennial Oscillation (QBO).


2016 ◽  
Vol 16 (13) ◽  
pp. 8695-8714 ◽  
Author(s):  
Markus Kunze ◽  
Peter Braesicke ◽  
Ulrike Langematz ◽  
Gabriele Stiller

Abstract. During boreal summer the upper troposphere/lower stratosphere (UTLS) in the Northern Hemisphere shows a distinct maximum in water vapour (H2O) mixing ratios and a coincident minimum in ozone (O3) mixing ratios, both confined within the Asian monsoon anticyclone (AMA). This well-known feature has been related to transport processes emerging above the convective systems during the Asian summer monsoon (ASM), further modified by the dynamics of the AMA. We compare the ability of chemistry–climate models (CCMs) to reproduce the climatological characteristics and variability of H2O, O3, and temperature in the UTLS during the boreal summer with MIPAS satellite observations and ERA-Interim reanalyses. By using a multiple linear regression model the main driving factors, the strength of the ASM, the quasi-biennial oscillation (QBO), and the El Niño–Southern Oscillation (ENSO), are separated. The regression patterns related to ENSO show a coherent, zonally asymmetric signal for temperatures and H2O mixing ratios for ERA-Interim and the CCMs and suggest a weakening of the ASM during ENSO warm events. The QBO modulation of the lower-stratospheric temperature near the Equator is well represented as a zonally symmetric pattern in the CCMs. Changes in H2O and O3 mixing ratios are consistent with the QBO-induced temperature and circulation anomalies but less zonally symmetric than the temperature pattern. Regarding the ASM, the results of the regression analysis show for ERA-Interim and the CCMs enhanced H2O and reduced O3 mixing ratios within the AMA for stronger ASM seasons. The CCM results can further confirm earlier studies which emphasize the importance of the Tibetan Plateau/southern slope of the Himalayas as the main source region for H2O in the AMA. The results suggest that H2O is transported towards higher latitudes at the north-eastern edge of the AMA rather than towards low equatorial latitudes to be fed into the tropical pipe.


2021 ◽  
pp. 1
Author(s):  
X. R. Zhao ◽  
Z. Sheng ◽  
H. Q. Shi ◽  
L. B. Weng ◽  
Y. He

AbstractUsing temperature data measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from February 2002 to March 2020, the temperature linear trend and temperature responses to the solar cycle (SC), Quasi-Biennial Oscillation (QBO), and El Niño-Southern Oscillation (ENSO) were investigated from 20 km to 110 km for the latitude range of 50°S-50°N. A four-component harmonic fit was used to remove the seasonal variation from the observed monthly temperature series. Multiple linear regression (MLR) was applied to analyze the linear trend, SC, QBO, and ENSO terms. In this study, the near-global mean temperature shows consistent cooling trends throughout the entire middle atmosphere, ranging from -0.28 to -0.97 K/decade. Additionally, it shows positive responses to the solar cycle, varying from -0.05 to 4.53 K/100sfu. A solar temperature response boundary between 50°S and 50°N is given, above which the atmospheric temperature is strongly affected by solar activity. The boundary penetrates deep below the stratopause to ~ 42 km over the tropical region and rises to higher altitudes with latitude. Temperature responses to the QBO and ENSO can be observed up to the upper mesosphere and lower thermosphere. In the equatorial region, 40%-70% of the total variance is explained by QBO signals in the stratosphere and 30%-50% is explained by the solar signal in the upper middle atmosphere. Our results, obtained from 18-year SABER observations, are expected to be an updated reliable estimation of the middle atmosphere temperature variability for the stratospheric ozone recovery period.


2016 ◽  
Vol 5 (2) ◽  
pp. 132 ◽  
Author(s):  
Tatiana A. Arivelo ◽  
Yuh-Lang Lin

Variability of and generation mechanisms for Madagascar rainfall are studied by conducting climatological, synoptic and mesoscale analyses. It is found the rainfall variability is highly sensitive to seasons with high variability in summer (Nov-Apr). The rainfall in summer is controlled by the Intertropical Convergence Zone (ITCZ) and orographic rainfall associated with tropical cyclones (TCs), while the rainfall in winter (May-Oct) is controlled by trade winds and local orographic rainfall along the eastern coast. Synoptic analysis reveals that major climate variations in summer are associated with ITCZ position, which is closely related to TC genesis locations and quasi-biennial oscillation (QBO). Linkages between El-Niño Southern Oscillation Index (ENSO) and Southern Oscillation Index (SOI) are identified as the cause of inconsistent dry or wet summers. Mesoscale analysis depicts the importance of the orographic effects on prevailing wind, which are controlled by the orography in both seasons. In winter, the prevailing trade winds over the Southwest Indian Ocean are from the east and are split to the north and south when it impinges on Malagasy Mountains. On the other hand, in summer the prevailing easterlies are weaker leading to the production of lee vortices, in addition to the flow splitting upstream of the mountain. Thus, the flow is classified into two regimes: (a) flow-over regime with no lee vortices under high Froude number (Fr=1.2-1.8) flow, and (b) flow-around regime with lee vortices under low Fr (=0.88-1.16) flow. A case study of TC Domoina (1984) indicates that the long-lasting heavy rainfall was induced by the strong orographic blocking of Madagascar. The shorter-term (e.g., 2 days) heavy orographic precipitation is characterized by large VH ∙Ñh which is composed by two common ingredients, namely a strong low-level wind normal to the mountain (VH) and a steep mountain slope (∇h).


2012 ◽  
Vol 12 (11) ◽  
pp. 30825-30867
Author(s):  
G. Kirgis ◽  
T. Leblanc ◽  
I. S. McDermid ◽  
T. D. Walsh

Abstract. The Jet Propulsion Laboratory (JPL) lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W) and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W), have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalized monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11-yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen–Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude ozone depleting gas index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne stratospheric aerosol and gas experiment II, halogen occultation experiment, and Aura-microwave limb sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the ozone depleting gas index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11-yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.


2020 ◽  
Author(s):  
Mohamadou Diallo ◽  
Manfred Ern ◽  
Felix Ploeger

Abstract. The stratospheric Brewer-Dobson circulation (BDC) is an important element of climate as it determines the transport and distributions of key radiatively active atmospheric trace gases, which affect the Earth’s radiation budget and surface climate. Here, we evaluate the inter-annual variability and trends of the BDC in the ERA5 reanalysis and inter-compare with the ERA-Interim reanalysis for the 1979–2018 period. We also assess the modulation of the circulation by the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO), and the forcings of the circulation by the planetary and gravity wave drag. A comparison of ERA5 and ERA-Interim reanalyses shows a very good agreement in the morphology of the BDC and in its structural modulations by the natural variability related to QBO and ENSO. Despite the good agreement in the spatial structure, there are substantial differences in the strength of the BDC and of the natural variability impacts on the BDC between the two reanalyses, particularly in the upper troposphere and lower stratosphere (UTLS), and in the upper stratosphere. Throughout most regions of the stratosphere, the variability and trends of the advective BDC are stronger in the ERA5 reanalysis due to stronger planetary and gravity wave forcings, except in the UTLS below 20 km where the tropical upwelling is about 40 % weaker due to a weaker gravity wave forcings at the equatorial flank of the subtropical jet. In the extra-tropics, the large-scale downwelling is stronger in ERA5 than in ERA-Interim linked to significant differences in planetary and gravity wave forcings. Analysis of the BDC trend shows a global acceleration of the annual mean residual circulation with an acceleration rate of about 1.5 % per decade at 70 hPa due to the long-term intensification in gravity and planetary wave breaking, consistent with observed and future climate model predicted BDC changes.


Sign in / Sign up

Export Citation Format

Share Document