Volcanic aerosol heating in the tropical tropopause region and associated water vapour changes

Author(s):  
Clarissa Kroll ◽  
Hauke Schmidt ◽  
Claudia Timmreck

<p>Large volcanic eruptions affect the distribution of atmospheric water vapour, for instance through cooling of the surface, warming of the lowermost stratosphere, and increasing the upwelling in the tropical tropopause region.</p><p>To better understand the volcanic impact on the tropical tropopause region and associated changes in the water vapour distribution in the stratosphere we employ a combination of short term convection-resolving global simulations with ICON and long term low resolution ensemble simulations with the MPI-ESM1.2-LR EVAens<strong>, </strong>both with prescribed volcanic forcing. With the EVAens a long term statistical analysis of the water vapour trends during the build-up and decay of a volcanic aerosol layer is made possible. The impact of the heating in the cold point regions is studied for five different eruption magnitudes. Stratospheric water vapour changes are analyzed in simulations with synthetic and observation based aerosol profiles showing that the distance of the aerosol profile from the cold point region can be more important for the water vapour entry into the stratosphere than the emitted amount of sulfur.</p><p>Whereas the EVAens is ideal to investigate the slow ascent of water vapour into the stratosphere the 10 km high resolution simulations with ICON allow insights into the convective changes after volcanic eruptions going beyond the limitations parameterizations usually impose on the model data.</p>

2020 ◽  
Author(s):  
Clarissa Alicia Kroll ◽  
Sally Dacie ◽  
Alon Azoulay ◽  
Hauke Schmidt ◽  
Claudia Timmreck

Abstract. Volcanic eruptions increase the stratospheric water vapour (SWV) entry via long wave heating through the aerosol layer in the cold point region, and this additional SWV alters the atmospheric energy budget. We analyze tropical volcanic eruptions of different eruption strengths with sulfur (S) injections ranging from 2.5 Tg S up to 40 Tg S using EVAens, the 100-member ensemble of the Max Planck Institute – Earth System Model in its low resolution configuration (MPI-ESM-LR) with artificial volcanic forcing generated by the Easy Volcanic Aerosol (EVA) tool. Significant increases in SWV are found for the mean over all ensemble members from 2.5 Tg S onward ranging between [5,160] %, while for single ensemble members the standard deviation between the control run members (0 Tg S) is larger than SWV increase of single ensemble members for the eruption strengths up to 20 Tg S. A historical simulation using observation based forcing files of the Mt. Pinatubo eruption, which was estimated to have emitted (7.5 ± 2.5) Tg S, returns SWV increases slightly higher than the 10 Tg S EVAens simulations due to differences in the aerosol profile shape. An additional amplification of the tape recorder signal is also apparent, which is not present in the 10 Tg S run. These differences underline that it is not only the eruption volume, but also the aerosol layer shape and location with respect to the cold point that have to be considered for post-eruption SWV increases. The additional tropical clear sky SWV forcing for the different eruption strengths amounts to [0.02, 0.65] W/m2, ranging between [2.5, 4] percent of the aerosol radiative forcing in the 10 Tg S scenario. The monthly cold point temperature increases leading to the SWV increase are not linear with respect to AOD nor is the corresponding SWV forcing, among others, due to hysteresis effects, seasonal dependencies, aerosol profile heights, and feedbacks. However, knowledge of the cold point temperature increase allows for an estimation of SWV increases with a 12 % increase per Kelvin increase in mean cold point temperature, and yearly averages show an approximately linear behaviour in the cold point warming and SWV forcing with respect to the AOD.


2021 ◽  
Vol 21 (8) ◽  
pp. 6565-6591
Author(s):  
Clarissa Alicia Kroll ◽  
Sally Dacie ◽  
Alon Azoulay ◽  
Hauke Schmidt ◽  
Claudia Timmreck

Abstract. Increasing the temperature of the tropical cold-point region through heating by volcanic aerosols results in increases in the entry value of stratospheric water vapor (SWV) and subsequent changes in the atmospheric energy budget. We analyze tropical volcanic eruptions of different strengths with sulfur (S) injections ranging from 2.5 Tg S up to 40 Tg S using EVAens, the 100-member ensemble of the Max Planck Institute – Earth System Model in its low-resolution configuration (MPI-ESM-LR) with artificial volcanic forcing generated by the Easy Volcanic Aerosol (EVA) tool. Significant increases in SWV are found for the mean over all ensemble members from 2.5 Tg S onward ranging between [5, 160] %. However, for single ensemble members, the standard deviation between the control run members (0 Tg S) is larger than SWV increase of single ensemble members for eruption strengths up to 20 Tg S. A historical simulation using observation-based forcing files of the Mt. Pinatubo eruption, which was estimated to have emitted (7.5±2.5) Tg S, returns SWV increases slightly higher than the 10 Tg S EVAens simulations due to differences in the aerosol profile shape. An additional amplification of the tape recorder signal is also apparent, which is not present in the 10 Tg S run. These differences underline that it is not only the eruption volume but also the aerosol layer shape and location with respect to the cold point that have to be considered for post-eruption SWV increases. The additional tropical clear-sky SWV forcing for the different eruption strengths amounts to [0.02, 0.65] W m−2, ranging between [2.5, 4] % of the aerosol radiative forcing in the 10 Tg S scenario. The monthly cold-point temperature increases leading to the SWV increase are not linear with respect to aerosol optical depth (AOD) nor is the corresponding SWV forcing, among others, due to hysteresis effects, seasonal dependencies, aerosol profile heights and feedbacks. However, knowledge of the cold-point temperature increase allows for an estimation of SWV increases of 12 % per Kelvin increase in mean cold-point temperature. For yearly averages, power functions are fitted to the cold-point warming and SWV forcing with increasing AOD.


2021 ◽  
Author(s):  
Laura Tomsche ◽  
Andreas Marsing ◽  
Tina Jurkat-Witschas ◽  
Johannes Lucke ◽  
Katharina Kaiser ◽  
...  

<p>Extreme volcanic eruptions inject significant amounts of sulfur-containing species into the lower stratosphere and sustain the stratospheric aerosol layer which tends to cool the atmosphere and surface temperatures.</p><p>During the BLUESKY campaign in May/June 2020, the aerosol composition and its precursor gas SO2 were measured with a time-of-flight aerosol mass spectrometer onboard the research aircraft HALO and with a atmospheric chemical ionization mass spectrometer onboard the DLR Falcon. While SO2 was slightly above background levels in the lower stratosphere above Europe, the aerosol mass spectrometer detected an extended aerosol layer. This sulfate aerosol layer was observed on most of the HALO flights and the sulfate mixing ratio increased significantly between 10 and 14 km altitude. Back trajectory calculations show no recent transport of polluted boundary layer air or ground-based emissions into the lower stratosphere. Therefore, we suggest that the stratospheric sulfate aerosol layer might be attributed to the aged stratospheric plume of the volcano Raikoke in Japan. In June 2019, Raikoke injected huge amounts of SO2 into the lower stratosphere, which were converted to sulfate and contributed to the stratospheric aerosol layer. This decaying volcanic aerosol layer was observed with the aerosol mass spectrometer over Europe a year after the eruption. The long-term volcanic remnants enhance the total stratospheric aerosol surface area, facilitate heterogeneous reactions on these particles and provide additional cloud condensation nuclei in the UTLS. They further offset some of the reduced sulfur burden from aviation that was observed during the COVID-19 lockdown in 2020. <br>The sensitive and highly time resolved airborne measurements of composition and size of stratospheric aerosol from an explosive volcanic eruption help to better constrain sulfur chemistry in the lower stratosphere, validate satellite observations near their detection threshold and can be used to evaluate dispersion and chemistry-climate models on long-term effects of volcanic aerosol. </p>


2014 ◽  
Vol 14 (21) ◽  
pp. 29209-29236 ◽  
Author(s):  
T. Wang ◽  
A. E. Dessler ◽  
M. R. Schoeberl ◽  
W. J. Randel ◽  
J.-E. Kim

Abstract. Lagrangian trajectories driven by reanalysis meteorological fields are frequently used to study water vapour (H2O) in the stratosphere, in which the tropical cold-point temperatures regulate H2O amount entering the stratosphere. Therefore, the accuracy of temperatures in the tropical tropopause layer (TTL) is of great importance for trajectory studies. Currently, most reanalyses, such as the NASA MERRA (Modern Era Retrospective-Analysis for Research and Applications), only provide temperatures with ~1.2 km vertical resolution in the TTL, which has been argued to introduce uncertainties in the simulations. In this paper, we quantify this uncertainty by comparing the trajectory results using MERRA temperatures on model levels (traj.MER-T) to those using temperatures in finite resolutions, including GPS temperatures (traj.GPS-T) and MERRA temperatures adjusted to recover wave-induced variability underrepresented by the current ~1.2 km vertical resolution (traj.MER-Twave). Comparing with traj.MER-T, traj.GPS-T has little impact on simulated stratospheric H2O (changes ~0.1 ppmv), whereas traj.MER-Twave tends to dry air by 0.2–0.3 ppmv. The bimodal dehydration peaks in traj.MER-T due to limited vertical resolution disappear in traj.GPS-T and traj.MER-Twave by allowing the cold-point tropopause to be found at finer vertical levels. Despite these differences in absolute values of predicted H2O and vertical dehydration patterns, there is virtually no difference in the interannual variability in different runs. Overall, we find that the finite resolution of temperature has limited impact on predicted H2O in the trajectory model.


2020 ◽  
Vol 20 (17) ◽  
pp. 10565-10586
Author(s):  
Stephanie Evan ◽  
Jerome Brioude ◽  
Karen Rosenlof ◽  
Sean M. Davis ◽  
Holger Vömel ◽  
...  

Abstract. Balloon-borne measurements of cryogenic frost-point hygrometer (CFH) water vapor, ozone and temperature and water vapor lidar measurements from the Maïdo Observatory on Réunion Island in the southwest Indian Ocean (SWIO) were used to study tropical cyclones' influence on tropical tropopause layer (TTL) composition. The balloon launches were specifically planned using a Lagrangian model and Meteosat-7 infrared images to sample the convective outflow from tropical storm (TS) Corentin on 25 January 2016 and tropical cyclone (TC) Enawo on 3 March 2017. Comparing the CFH profile to Aura's Microwave Limb Sounder's (MLS) monthly climatologies, water vapor anomalies were identified. Positive anomalies of water vapor and temperature, and negative anomalies of ozone between 12 and 15 km in altitude (247 to 121 hPa), originated from convectively active regions of TS Corentin and TC Enawo 1 d before the planned balloon launches according to the Lagrangian trajectories. Near the tropopause region, air masses on 25 January 2016 were anomalously dry around 100 hPa and were traced back to TS Corentin's active convective region where cirrus clouds and deep convective clouds may have dried the layer. An anomalously wet layer around 68 hPa was traced back to the southeast Indian Ocean where a monthly water vapor anomaly of 0.5 ppmv was observed. In contrast, no water vapor anomaly was found near or above the tropopause region on 3 March 2017 over Maïdo as the tropopause region was not downwind of TC Enawo. This study compares and contrasts the impact of two tropical cyclones on the humidification of the TTL over the SWIO. It also demonstrates the need for accurate balloon-borne measurements of water vapor, ozone and aerosols in regions where TTL in situ observations are sparse.


2018 ◽  
Author(s):  
Laura Thölix ◽  
Alexey Karpechko ◽  
Leif Backman ◽  
Rigel Kivi

Abstract. Stratospheric water vapor plays a key role in radiative and chemical processes, it e.g. influences the chemical ozone loss via controlling the polar stratospheric cloud formation in the polar stratosphere. The amount of water entering the stratosphere through the tropical tropopause differs substantially between chemistry-climate models. This is because the present-day models have difficulties in capturing the whole complexity of processes that control the water transport across the tropopause. As a result there are large differences in the stratospheric water vapour between the models. In this study we investigate the sensitivity of simulated Arctic ozone loss to the amount of water, which enters the stratosphere through the tropical tropopause. We used a chemical transport model, FinROSE-CTM, forced by ERA-Interim meteorology. The water vapour concentration in the tropical tropopause was varied between 0.5 and 1.6 times the concentration in ERA-Interim, which is similar to the range seen in chemistry climate models. The water vapour changes in the tropical tropopause led to about 1.5 and 2 ppm more water vapour in the Arctic polar vortex compared to the ERA-Interim, respectively. We found that the impact of water vapour changes on ozone loss in the Arctic polar vortex depend on the meteorological conditions. Polar stratospheric clouds form in the cold conditions within the Arctic vortex, and chlorine activation on their surface lead to ozone loss. If the cold conditions persist long enough (e.g. in 2010/11), the chlorine activation is nearly complete. In this case addition of water vapour to the stratosphere increased the formation of ICE clouds, but did not increase the chlorine activation and ozone destruction significantly. In the warm winter 2012/13 the impact of water vapour concentration on ozone loss was small, because the ozone loss was mainly NOx induced. In intermediately cold conditions, e.g. 2013/14, the effect of added water vapour was more prominent than in the other studied winters. The results show that the simulated water vapour concentration in the tropical tropopause has a significant impact on the Arctic ozone loss and deserves attention in order to improve future projections of ozone layer recovery.


2016 ◽  
Author(s):  
Alison Ming ◽  
Amanda C. Maycock ◽  
Peter Hitchcock ◽  
Peter Haynes

Abstract. The prominent annual cycle in temperatures (with maximum peak to peak amplitude of ~ 8 K around 70 hPa and ~ 6 K at 90 hPa) is a key feature of the tropical tropopause layer (TTL). There is also a strong annual cycle observed in both ozone and water vapour in the TTL, with the latter understood as a consequence of the temperature annual cycle. The radiative contributions of the annual cycle in ozone and water vapour to the temperature annual cycle are studied, first with a seasonally evolving fixed dynamical heating calculation (SEFDH) where the dynamical heating is assumed to be unaffected by the radiative heating. In this framework, the variations in ozone and water vapour derived from satellite data lead to variations in temperature that are respectively in phase and out of phase with the observed annual cycle. The ozone contribution is at the upper range of previous calculations. This difference in phasing can be understood from the fact that an increase in water vapour cools the TTL, predominantly through enhanced local emission, whereas an increase in ozone warms the TTL, mostly through enhanced absorption of upwelling longwave radiation from the troposphere. The relative phasing of the water vapour and ozone effects on temperature is further influenced by the fact that for water vapour there is a strong non-local effect on temperatures from variations in concentrations occurring in lower layers of the TTL. In contrast, for ozone it is the local variations in concentration that have the strongest impact on local temperature variations. The factors that determine the vertical structure of the annual cycle in temperature are also examined. Radiative damping time scales are shown to maximize over a broad layer centred on the cold point. Non-radiative processes in the upper troposphere are inferred to impose a strong constraint on temperature perturbations below 130 hPa. These effects, combined with the annual cycles in dynamical and radiative heating, which both peak above the cold point, result in a maximum amplitude of temperature response that is relatively localized around 70 hPa. Finally, the SEFDH assumption is relaxed by considering the temperature responses to ozone and water vapour variations in a zonally symmetric dynamical model. While the magnitude of the tropical averaged temperature annual cycle in this framework is found to be consistent with the SEFDH results, the effects of the dynamical adjustment act to reduce the strong latitudinal gradients and inter-hemispheric asymmetry in the temperature response. This results in a temperature response that shows a considerably smoother structure than inferred from the SEFDH model. Whilst precise numerical values are likely to be sensitive to changes in the details of radiation code and of ozone and water vapour concentrations, the net contribution to the annual cycle in temperature from both ozone and water vapour averaged between 20° N–S, calculated in this work, is substantial and around 35 % of the observed peak to peak amplitude at both 70 hPa and 90 hPa.


2006 ◽  
Vol 63 (3) ◽  
pp. 1013-1027 ◽  
Author(s):  
F. J. Robinson ◽  
S. C. Sherwood

Abstract Simulations with the Weather Research and Forecasting (WRF) cloud-resolving model of deep moist convective events reveal net cooling near the tropopause (∼15–18 km above ground), caused by a combination of large-scale ascent and small-scale cooling by the irreversible mixing of turbulent eddies overshooting their level of neutral buoyancy. The turbulent cooling occurred at all CAPE values investigated (local peak values ranging from 1900 to 3500 J kg−1) and was robust to grid resolution, subgrid-scale turbulence parameterization, horizontal domain size, model dimension, and treatment of ice microphysics. The ratio of the maximum downward heat flux in the tropopause to the maximum tropospheric upward heat flux was close to 0.1. This value was independent of CAPE but was affected by changes in microphysics or subgrid-scale turbulence parameterization. The convective cooling peaked roughly 1 km above the cold point in the background input sounding and the mean cloud- and (turbulent kinetic energy) TKE-top heights, which were all near 16.5 km above ground. It was associated with turbulent entrainment of stratospheric air from as high as 18.25 km into the troposphere. Typical cooling in the experiments was of order 1 K during convective events that produced order 10 mm of precipitation, which implied a significant contribution to the tropopause energy budget. Given the sharp concentration gradients and long residence times near the cold point, even such a small entrainment rate is likely consequential for the transport and ambient distribution of trace gases such as water vapor and ozone, and probably helps to explain the gradual increase of ozone typically observed below the tropical tropopause.


2009 ◽  
Vol 22 (23) ◽  
pp. 6168-6180 ◽  
Author(s):  
A. G. Marshall ◽  
A. A. Scaife ◽  
S. Ineson

Abstract The impact of explosive volcanic eruptions on the atmospheric circulation at high northern latitudes is assessed in two versions of the Met Office Hadley Centre’s atmospheric climate model. The standard version of the model extends to an altitude of around 40 km, while the extended version has enhanced stratospheric resolution and reaches 85-km altitude. Seasonal hindcasts initialized on 1 December produce a strengthening of the winter polar vortex and anomalous warming over northern Europe characteristic of the positive phase of the Arctic Oscillation (AO) when forced with volcanic aerosol following the 1963 Mount Agung, 1982 El Chichón, and 1991 Mount Pinatubo eruptions, as is observed. The AO signal in the extended model is of comparable strength to that in the standard model, showing that there is little impact from both increasing the vertical resolution in the stratosphere and extending the model domain to near the mesopause. The presence of this signal in the models, however, is likely due to the persistence of the observed signal from the initial conditions, because a similar set of experiments initiated with the same conditions, but with no volcanic aerosol forcing, exhibits a similar response as the forced runs. This suggests that the model has limited fidelity in capturing the response to volcanic aerosols on its own, consistent with previous studies on the impact of volcanic forcing in long climate simulations, but does support the premise that seasonal winter forecasts are substantially improved with the inclusion of stratospheric information.


2013 ◽  
Vol 13 (10) ◽  
pp. 5205-5225 ◽  
Author(s):  
T. Trickl ◽  
H. Giehl ◽  
H. Jäger ◽  
H. Vogelmann

Abstract. Lidar measurements at Garmisch-Partenkirchen (Germany) have almost continually delivered backscatter coefficients of stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt Pinatubo (Philippines, 1991). Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa. We conclude that the increase of our integrated backscatter coefficients starting in 2008 is mostly due to volcanic eruptions with explosivity index 4, penetrating strongly into the stratosphere. Most of them occurred in the mid-latitudes. A key observation for judging the role of eruptions just reaching the tropopause region was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash above the volcano was reported just as 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.3 km. Our analysis suggests for two or three of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, differing from the strong descent of the layers entering Central Europe at low altitudes. The backscatter coefficients within the first 2 km above the tropopause exceed the stratospheric background by a factor of four to five. In addition, Asian and Saharan dust layers were identified in the free troposphere, Asian dust most likely even in the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document