The potential of TanDEM-X repeat acquisitions to monitor elevation and mass changes of Arctic and Antarctic glaciers

Author(s):  
Christian Sommer ◽  
Thorsten Seehaus ◽  
Lukas Sochor ◽  
Philipp Malz ◽  
Matthias Braun

<p>The large ice caps and glaciers of the northern and southern polar regions have the potential to contribute significantly to global sea-level rise, yet measurements of glacier mass changes in those regions are scarce and difficult due to harsh conditions and the size of Arctic and Antarctic glacier areas. Acquisitions of the synthetic aperture radar satellite mission TanDEM-X provide valuable insights into glacier dynamics in those regions as the X-band radar is independent from clouds and illumination and can resolve elevation changes of large glacierized areas as well as individual glaciers. We use specifically generated and coregistered digital elevation models (DEM) from repeated TanDEM-X data takes to derive glacier elevation changes between 2010 and 2020.</p><p>For the Arctic regions, we already calculated elevation changes for the Russian Arctic archipelagos from TanDEM-X acquisitions (2000-2017). Currently, we are preparing similar TanDEM-X DEM differences for Arctic glaciers outside the Greenland ice sheet (Svalbard, Iceland, Alaska, Canadian Arctic, Scandinavia and North Asia). In contrast to the wide and smooth areas of the East and West Antarctic ice sheets, the steep topography of the Antarctic Peninsula strongly limits the application of altimeter data for accurately quantifying glacier mass changes. Therefore, we computed glacier mass changes along the Antarctic Peninsula by means of TanDEM-X data.</p><p>Additionally, measurements of the IceSAT2 laser altimeter will be integrated in the analysis to improve the estimation of radar signal penetration into snow and firn and thereby reduce the elevation change and mass balance uncertainties.</p>

2019 ◽  
Vol 65 (251) ◽  
pp. 410-421 ◽  
Author(s):  
ZBYNĚK ENGEL ◽  
JAN KROPÁČEK ◽  
JANA SMOLÍKOVÁ

ABSTRACTThe long-term warming on the Antarctic Peninsula in the second half of the 20th century prompted rapid retreat of glaciers on the peninsula and surrounding islands. Retreat accelerated until the beginning of the new millennium when the regional warming trend significantly decreased. The response of glaciers to the change in temperature trend has been observed around the northern part of the Antarctic Peninsula but the timing of the shift from the surface lowering to mass gain remains unclear. Using historical aerial photographs, DEMs and satellite altimeter data from ICESat, we estimate areal and surface elevation changes of two small ice caps in the northern part of James Ross Island over the last 39 years. The glacierized area on Lachman Crags decreased from 4.337 ± 0.037 to 3.581 ± 0.014 km2 (−17.4%) between 1979 and 2006 and then increased to 3.597 ± 0.047 km2 (0.4%) until 2016. Surface lowering observed on ice caps after 1979 continued at least until 2008 as indicated by the ICESat data. The change from the lowering trend to increase in glacier surface elevation probably occurred after the ablation season 2008/09, which ranks among the warmest summers in the north-eastern Antarctic Peninsula since the mid-20th century.


2005 ◽  
Vol 42 ◽  
pp. 77-82 ◽  
Author(s):  
R. Thomas ◽  
E. Frederick ◽  
W. Krabill ◽  
S. Manizade ◽  
C. Martin ◽  
...  

AbstractPrecise measurements of surface elevation on the Greenland ice sheet have been made almost every year since 1991 by an airborne scanning laser altimeter operated by NASA/Wallops Flight Facility. Results show substantial thinning over large areas near the coast, with a general increase in thinning rates since 1997, in the drainage basins of thinning glaciers, and a recent thickening in the southeast associated with very high snowfall in this region during 2003. Here, we present first results from the comparison of the aircraft data with similar measurements from the laser altimeter aboard NASA’s Ice, Cloud and land Elevation Satellite (ICESat), which was launched in January 2003. These show very close agreement with results inferred solely from the aircraft measurements, indicating that accuracies are similar for both datasets. Broad spatial coverage by satellite, together with the baseline dataset of aircraft measurements, offers the prospects of routine surveys of ice-sheet elevation changes by ICESat and follow-on missions.


2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2013 ◽  
Vol 7 (1) ◽  
pp. 373-417 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to on-going atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2021 ◽  
pp. 14-38
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘The physical environment’ describes the Arctic as the polar opposite of the Antarctic continent as it is an ocean semi-enclosed by land. The rocks of the Arctic record key periods in Earth history. The Arctic environment has had an interesting path of evolution. Why is the Arctic cold today? The polar latitudes actually receive less solar energy than the rest of the Earth's surface. What is the key role of sea ice in the Arctic climate system? How does sea ice decline impact upon the Arctic Ocean? The Greenland ice sheet, high latitude glaciers, and the importance of permafrost in the far north are also important topics related to the physical environment.


2008 ◽  
Vol 54 (185) ◽  
pp. 203-212 ◽  
Author(s):  
Robert Thomas ◽  
Curt Davis ◽  
Earl Frederick ◽  
William Krabill ◽  
Yonghong Li ◽  
...  

AbstractWe compare rates of surface-elevation change on the Greenland ice sheet derived from European Remote-sensing Satellite-2 (ERS-2) radar-altimeter data with those obtained from laser-altimeter data collected over nearly the same time periods. Radar-altimeter data show more rapid thickening (9 ± 1 cm a−1 above 1500 m elevation in the north, and 3 ± 1 cm a−1 above 2000 m in the south) than the laser estimates, possibly caused by a lifting of the radar-reflection horizon associated with changes in the snowpack, such as those caused by progressively increased surface melting, as summer temperatures rise. Over all the ice sheet above 2000 m, this results in an ERS-derived volume balance ∼75 ± 15 km3 a−1 more positive than that from laser data. This bias between laser and radar estimates of elevation change varies spatially and temporally, so cannot at present be corrected without independent surveys such as those presented here. At lower elevations, comparison of detailed repeat laser surveys over Jakobshavn Isbræ with ERS results over the same time interval shows substantial ERS underestimation of ice-thinning rates. This results partly from missing data because of ‘bad’ radar waveforms over the very rough surface topography, and partly from the tendency for large radar footprints to sample preferentially local high points in the topography, thus missing regions of most rapid thinning along glacier depressions.


2014 ◽  
Vol 60 (221) ◽  
pp. 489-499 ◽  
Author(s):  
Andreas Münchow ◽  
Laurie Padman ◽  
Helen A. Fricker

AbstractPetermann Gletscher, northwest Greenland, drains 4% of the Greenland ice sheet into Nares Strait. Its floating ice shelf retreated from 81 to 48 km in length during two large calving events in 2010 and 2012. We document changes in the three-dimensional ice-shelf structure from 2000 to 2012, using repeated tracks of airborne laser altimetry and ice radio-echo sounding, ICESat laser altimetry and MODIS visible imagery. The recent ice-shelf velocity, measured by tracking surface features between flights in 2010 and 2011, is ~1.25 km a−1, ~15–30% faster than estimates made before 2010. The steady- state along-flow ice divergence represents 6.3 Gta−1 mass loss through basal melting (~5Gta−1) and surface melting and sublimation (~1.0Gta−1). Airborne laser altimeter data reveal thinning, both along a thin central channel and on the thicker ambient ice shelf. From 2007 to 2010 the ice shelf thinned by ~5 m a−1, which represents a non-steady mass loss of ~4.1 Gta−1. We suggest that thinning in the basal channels structurally weakened the ice shelf and may have played a role in the recent calving events.


2020 ◽  
Author(s):  
Raul Cordero ◽  
Alessandro Damiani ◽  
Sarah Feron ◽  
Alia Khan ◽  
Jose Jorquera ◽  
...  

<p>Assessing the albedo response due to light-absorbing impurities (LAI) in coastal snowpacks has become of great interest in the light of the ‘Antarctic greening’. Reductions in the albedo (triggered by a change in air temperature or by the LAI deposition) can also enhance feedback mechanisms; as the albedo drops, the fraction of absorbed solar energy increases, which leads to additional albedo drops.</p><p>Here we assess the presence of Black Carbon (BC) and LAI in coastal snowpacks in the Antarctic Peninsula. The BC-equivalent contentwas assessed by applying the meltwater filtration (MF) technique to snow samples taken at 7 locations in theAntarctic Peninsula, from latitude 62<sup>o</sup>S to latitude 67<sup>o</sup>S. BC-equivalentconcentrations exhibited significant geographical differences,but were found to be generally lower than 5 ng/g (in the range of those reported for the Arctic Ocean and Greenland). Moreover, the Angstrom coefficients were found to be particularly high at the northern tip of the Antarctic Peninsula,likely due to the snow algae presence. After the onset of melt, red snow algae bloom, significantly affecting the surface albedo, as shown by our measurements.</p>


2013 ◽  
Vol 59 (215) ◽  
pp. 524-532 ◽  
Author(s):  
J.F. Levinsen ◽  
I.M. Howat ◽  
C.C. Tscherning

AbstractWe combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (∼100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI) and Kangerdlugssuaq (KL). We find that the main trunks of JI and KL lowered at rates of 30–35 and 7–20 m a−1,respectively. The rates decreased inland. The corresponding errors were 0.3–5.2 m a−1for JI and 0.3–5.1 m a−1for KL, with errors increasing proportionally with distance from the altimeter paths.


Sign in / Sign up

Export Citation Format

Share Document