Disentangling human-fire-climate linkages at mid-elevations in the Šumava Mountains of central Europe

Author(s):  
Vachel Kraklow ◽  
Alice Moravcová ◽  
Petr Kuneš ◽  
Dagmar Dreslerová ◽  
Walter Finsinger ◽  
...  

<p>To distinguish human-caused from naturally-caused fire regimes, palaeoecological records must demonstrate that observed changes in vegetation and fire are in response to changes in human activity rather than driven by natural climate-fire relationships. Here, we use a high-resolution multi-proxy approach (testate amoebae derived depth to water table (DWT), macro- and micro-charcoal, charcoal morphologies, pollen, non-pollen palynomorphs, plant macrofossils, and XRF) from Pékna, a mid-elevation peat bog situated near Lipno Reservoir - an area rich in human land use - to investigate human-driven vs. naturally-driven fire regimes in the Šumava Mountains. Our results span the entire Holocene and illustrate that humans have been consistently modifying the landscape since 5,500 cal yr BP. Specifically, during the mid-Holocene (7,000 – 4,000 cal yr BP) when water table was at its highest at Pékna, relatively frequent, low-severity fires occurred and was accompanied by the prolonged presence of coprophilous fungi, secondary human indicators and an opening of the forest, suggesting human activities. Human land use intensified ~1,500 cal yr BP as indicated by increases in primary human indicator species, an increase in early successional tree species (Pinus and Betula) indicating an opening of the forest canopy, and the development of regional mining is suggested by a marked increase in the concentration of lead (Pb). While water table depths decreased indicating drier conditions ~1,500 cal yr BP, local fires persisted, burning at low severities as indicated by the continued presence of charred herb macrofossils. The most intensive land use occurred in the last 500 years with the highest abundance of primary and secondary human indicator species, and coprophilious fungi. Locally, marked increases in the concentration of both redox-sensitive elements such as iron (Fe), calcium (Ca), sulphur (S), and chlorine (Cl), and detrital elements such as potassium (K), aluminum (Al) and Titanium (Ti) indicate major changes in the depositional environment over the last 500 years, possibly due to peat draining. However, this time period witnessed decreased biomass burning as a result of a more open landscape and less fuels to burn. These results contribute to a growing body of literature illustrating the importance of prehistoric impact in the mid-mountains of Central Europe.   </p>

The Holocene ◽  
2020 ◽  
Vol 30 (8) ◽  
pp. 1186-1195
Author(s):  
Piotr Kołaczek ◽  
Monika Karpińska-Kołaczek ◽  
Mariusz Gałka ◽  
Grażyna Miotk-Szpiganowicz ◽  
Milena Obremska ◽  
...  

In this article, we examined the indicative value of a relationship between two non-pollen palynomorphs (NPPs), fungal HdV-10, related to the presence of Calluna vulgaris, and HdV-31A, which is testate amoeba – Archerella flavum. Both are frequently present on slides designated for pollen analysis, prepared from Sphagnum peat. We analysed three profiles from three extensive ombrotrophic peatlands in northern Poland, in which the content of testate amoebae (TA) was examined and TA-inferred depth to the water table (DWT) was reconstructed. The new analysis of palynological samples regarding NPPs revealed that strong increases in HdV-10 content were mostly simultaneous to HdV-31A declines. However, the relations between both types were not statistically significant. The rapid increases in HdV-10, despite the fact that this type of conidiospores is related to drier habitats on peatlands, were tentatively interpreted as an indicator of rapid rises in the water table level which, in consequence, might have stimulated the production of these spores by fungi. In addition, a negative correlation between HdV-31A and Arcella discoides and positive one, but weaker, in case of HdV-10 (attributed by some authors to species Trichocladium opacum (Corda) S Hughes) and A. discoides show a link between mutual fluctuations of both NPPs and hydrological instabilities on peatland. The Bagno Kusowo bog, the westernmost peatland subjected to the study, displayed an intriguing agreement between the presence of peat sections with strong increases in HdV-10 and cold climate events affecting Europe. Our study reveals that counting even a limited number of NPP types during the standard pollen analysis of Sphagnum peat may support the interpretation of results, especially, in cases when the investigation lacks testate amoeba analysis. When the reconstruction of TA-inferred DWT is provided, it may introduce additional information about the patterns of hydrological dynamics.


2020 ◽  
Vol 29 (8) ◽  
pp. 649 ◽  
Author(s):  
Mauro E. González ◽  
Ariel A. Muñoz ◽  
Álvaro González-Reyes ◽  
Duncan A. Christie ◽  
Jason Sibold

Historical fire regimes are critical for understanding the potential effects of changing climate and human land-use on forest landscapes. Fire is a major disturbance process affecting the Andean Araucaria forest landscape in north-west Patagonia. The main goals of this study were to reconstruct the fire history of the Andean Araucaria–Nothofagus forests and to evaluate the coupled influences of climate and humans on fire regimes. Reconstructions of past fires indicated that the Araucaria forest landscape has been shaped by widespread, stand-replacing fires favoured by regional interannual climate variability related to major tropical and extratropical climate drivers in the southern hemisphere. Summer precipitation and streamflow reconstructions tended to be below average during fire years. Fire events were significantly related to positive phases of the Southern Annular Mode and to warm and dry summers following El Niño events. Although Euro-Chilean settlement (1883–1960) resulted in widespread burning, cattle ranching by Pehuenche Native Americans during the 18th and 19th centuries also appears to have changed the fire regime. In the context of climate change, two recent widespread wildfires (2002 and 2015) affecting Araucaria forests appear to be novel and an early indication of a climate change driven shift in fire regimes in north-west Patagonia.


2012 ◽  
Vol 77 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Damien Rius ◽  
Boris Vanniére ◽  
Didier Galop

Located on a mountain pass in the west-central Pyrenees, the Col d'Ech peat bog provides a Holocene fire and vegetation record based upon nine 14C (AMS) dates. We aim to compare climate-driven versus human-driven fire regimes in terms of frequency, fire episodes distribution, and impact on vegetation. Our results show the mid-Holocene (8500–5500 cal yr BP) to be characterized by high fire frequency linked with drier and warmer conditions. However, fire occurrences appear to have been rather stochastic as underlined by a scattered chronological distribution. Wetter and colder conditions at the mid-to-late Holocene transition (4000–3000 cal yr BP) led to a decrease in fire frequency, probably driven by both climate and a subsequent reduction in human land use. On the contrary, from 3000 cal yr BP, fire frequency seems to be driven by agro-pastoral activities with a very regular distribution of events. During this period fire was used as a prominent agent of landscape management.


2020 ◽  
Author(s):  
Jennifer Galloway ◽  
Mariusz Gałka ◽  
Graeme Swindles ◽  
Matt Amesbury ◽  
Stephen Wolfe ◽  
...  

<p>A peatland from subarctic Canada (Handle Lake 62°29’26.44”N, 114°23’18.23”W) is a degrading permafrost peatland chosen for detailed study due to a legacy of regional arsenic (As) contamination as a result of almost 8 decades of gold mining. The fate of permafrost peatlands and their element stores is unknown due to complex feedbacks between peat accumulation, hydrology, and vegetation that affect redox state and element mobility. We combine palynology with study of plant macrofossils, testate amoebae, organic matter composition, and bulk geochemistry preserved in a ca. 4180-4972 cal year old peat monolith retrieved from the Handle Lake peatland to reconstruct the ecohydrological dynamics to assess future trajectories of permafrost peat, and contaminant storage or release, in response to current and future warming. Sphagnum riparium macrofossils are rare in modern peat habitats and sub-fossils are rare in paleoecological records. Plant macrofossils of this taxon occur in an 11-cm thick layer together with Sphagnum angustifolium between 43 cm (ca.  3390-3239 cal BP) and 25 cm depth (ca. 2755-2378 cal BP) in the monolith. The S. riparium sub-fossils are present with the hydrophilous testate amoebae species Archerella flavum, Hyalosphenia papilio and Difflugia globulosa that are used to quantitatively reconstruct a water table depth of 0-4 cm below the peat surface. Sub-fossils of S. riparium disappear at ca. 2755-2378 cal BP, likely due to an autogenic trophic shift and succession towards more acidophilic conditions favourable to species such as Sphagnum fuscum and Sphagnum russowii. We interpret the occurrence of S. riparium as an indicator of wet and minerotrophic conditions linked to peatland development form rich fen to oligotrophic bog.  Because S. riparium is a key pioneer species of disturbed peatlands that have experienced permafrost degradation it will likely be favoured in northern regions experiencing rapid climate warming. In the palynological record the proportion of Sphagnum-type A spores increases (up to 80%) between ca.  3390-3239 cal BP and ca. 2755-2378 cal BP concurrent with a decline in other Sphagnum-type spores. A peak in micro- and macroscopic charcoal occurs between ca. 3557-3286 cal BP and ca. 3275-2771 cal BP, concurrent with a decline in Picea pollen and an increase in Alnus pollen. Regionally, between ca. 3500 and ca. 2500 cal BP Neoglacial climate prevailed with post-Neoglacial warming at ca. 2500 cal BP. It is therefore possible that regional fire occurrence stimulated permafrost degradation at ca. 3500 cal BP. Background As in the active layer monotlith is ~20-30 ppm. The upper 10 cm of the peat are impacted by aerial deposition of As from ore processing and concentrations range up to ~360 ppm. An increase in the concentration of As in the monolith from ~15-20 ppm at the base of the monolith to ~30-40 ppm during this interval may reflect water table depth dynamics that affected the mobility and fate of this redox sensitive element and/or downward mobility from layers impacted by contamination from mineral processing. Degradation of this permafrost within the Handle Lake peatland will release the currently stored As and other contaminants to the regional environment.</p>


The Holocene ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 1552-1566 ◽  
Author(s):  
Dominika Łuców ◽  
Mariusz Lamentowicz ◽  
Milena Obremska ◽  
Maria Arkhipova ◽  
Piotr Kittel ◽  
...  

This paper presents the results of multiproxy research (pollen, charcoal, plant macrofossil and testate amoebae) on the biogenic deposits core from Gorodetsky Moch, an ombrotrophic peatland in western Russia (Western Dvina Lakeland). We reconstructed the impact of disturbance on peatland development in the last 300 years by using chronology of the records based on 14C and 210Pb data set. The multiproxy reconstruction was compared with changes in the land cover using historical maps and Corona images, which provides a unique spatial analysis of past ecological and land-use changes. We aimed to determine the effect of local disturbances (drainage) and land-use changes (landscape openness) on the development of the peatland during the last 300 years. Our study suggests that human activity had a crucial impact on the development of the peatland in the last centuries. The analysis of testate amoebae and plant macrofossils revealed a clear disturbed layer in the second half of the 20th century CE. Most probably, the drainage of the peatland triggered changes in the community of testate amoebae and plants, thereby causing a functional shift in Sphagnum peatland ecosystem. The hydrological stress and vegetation composition shift led to the collapse of mixotrophic testate amoebae. However, the peatland showed strong resilience and recovered toward the end of the 20th century CE and the beginning of the 21st century CE, despite the lower water table. Our study shows an example of the peatland ecosystem that experienced a considerable stress but finally sustained the former function.


2020 ◽  
Author(s):  
Agnieszka Mroczkowska ◽  
Piotr Kittel ◽  
Katarzyna Marcisz ◽  
Ekaterina Dolbunova ◽  
Emilie Gauthier ◽  
...  

<p>Peatlands are natural geoarchives which record within organic deposits a picture of the past environmental changes. Depending on the preserved proxy, we are able to reconstruct various aspects of palaeoenvironmental changes, e.g. using pollen (vegetation composition), plant macrofossils (local vegetation changes), testate amoebae and zoological remains (hydrological changes) or XRF scanning (geochemical changes). Here, we investigated changes in land use and climate of western Russia using a range of biotic and abiotic proxies. This part of Europe is characterized by a continental climate, which makes this region very sensitive to climate change, in particular to precipitation fluctuations. Furthermore, in the last two centuries strong human impact in that area has been noticed.  </p><p>The Serteya kettle hole mire (55°40'N 31°30'E) is situated in the Smolensk Oblast in Western Dvina Lakeland. Study site is located close to the range of plant communities belonging to the hemiboreal zone, making it an ideal position to trace the plant succession of Eastern Europe. Preliminary dating of the material proves that the average rate of biogenic deposits in the reservoir was approx. 1 m per 600 years. The majority of the European peatlands was in some sense transformed as a result of drainage and land use practices in their basins. Serteya kettle hole mire allowed us to accurately track how a small ecosystem responds to palaeoenvironmental changes. Preliminary results will show the major fluctuations of the mire hydrology accompanied by the changes in the land use in the region. Our goal is also to determine the resistance and resilience of peat bogs to disturbances.</p>


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 530
Author(s):  
Zuzana Dítě ◽  
Róbert Šuvada ◽  
Tibor Tóth ◽  
Pavol Eliáš Jun ◽  
Vladimír Píš ◽  
...  

Little is known about the suite of ecological conditions under which characteristic species may continue to develop under the pressure of recent habitat deterioration. We aimed to determine the niche of three indicator species of the priority habitat Pannonic salt steppes and to find out how their vegetation composition, land use, and soil chemistry mirror the current condition of their typical habitat. A plot-based vegetation survey was conducted in degraded and in pristine (reference) inland salt steppes in East-Central Europe. We confirmed decreased habitat quality at their northern geographical limit. Most of the sites there showed a strong prevalence of generalists (e.g., Elytrigia repens) and lack of specialists, both resulting from lowered habitat extremity and inappropriate land use (abandonment). A small proportion of plots (19%) were in the same good condition as the reference vegetation in the central area. Soil analyses revealed that the studied halophytes are able to persist on desalinized soils if the land use is suitable. The occurrence of the annual Camphorosma annua (Amaranthaceae) was driven largely by abiotic stress; grazing alone is insufficient for its long-term persistence, while the perennial Artemisia santonicum (Asteraceae) and Tripolium pannonicum (Asteraceae) have higher survival chances as they are able to coexist with generalists. Overall habitat quality can be reliably determined from the analyzed ecological conditions of indicator species. The outcomes of the presented work are relevant for conservation practice and can serve as a quick tool for assessing the current stage of other grassland habitats.


Sign in / Sign up

Export Citation Format

Share Document