scholarly journals Organic Vapor Condensation in Pyro-cumulonimbus Outflow Explains Large Stratospheric Smoke Mass Injection and Thickly Coated Black Carbon

Author(s):  
Manvendra K. Dubey ◽  
Kyle Gorkowski ◽  
Jon Reisner ◽  
Katherine Benedict ◽  
Alex Josephson ◽  
...  

<p>Airborne measurements of upper troposphere and lower stratosphere biomass burning smoke show a large size mode at 350nm radius. Furthermore,  very thickly coated black carbon (300-400nm radius) is observed in 2 month aged Pyro-cumulonimbus (PyroCb) smoke in the lower stratosphere. Finally, the stratospheric aerosol mass injections from the 2017 British Columbia (BC17) PyroCbs are much larger than fuel loading predicts.  We propose a secondary organic aerosol (SOA) production mechanism where volatile organic compounds (VOCs) emitted by fires condense in the cold convective PyroCb updrafts to explain the aforementioned data. Observations supporting this mechanism present in FIREX-AQ, ATOM and CARIBEC airborne data are synthesized. The condensation, evaporation and coagulation mechanisms are implemented into LANL’s large eddy cloud resolving model called HIGRAD.  Our simulations provide insights into the vertical distribution of SOA in the BC17 PyroCb and the role of warm and ice clouds in lofting it into the lower stratosphere. We show that SOA formation can increase aerosols by a factor of 2-3 and latent heat from warm and ice clouds adds 5 km to the injection height of BC17 fire smoke. The fate, transport and impacts  of smoke from BC17 and 2020 Australian fires are examined using climate model (CESM) simulations.  </p>

2017 ◽  
Author(s):  
Laura Revell ◽  
Andrea Stenke ◽  
Beiping Luo ◽  
Stefanie Kremser ◽  
Eugene Rozanov ◽  
...  

Abstract. To simulate the impacts of volcanic eruptions on the stratosphere, chemistry-climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based Lidar measurements for gap-filling immediately after the Mt. Pinatubo eruption, when the stratosphere was optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses CLAES (Cryogenic Limb Array Etalon Spectrometer) measurements on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt. Pinatubo eruption instead of ground-based Lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry-climate model simulations of the recent past (1986–2005) to investigate the impact of the Mt. Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt. Pinatubo eruption is overestimated by 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.


2018 ◽  
Author(s):  
Harri Kokkola ◽  
Thomas Kühn ◽  
Anton Laakso ◽  
Tommi Bergman ◽  
Kari E. J. Lehtinen ◽  
...  

Abstract. In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol-chemistry-climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation is evaluated against the observations of aerosol optical properties, aerosol mass, and size distributions. We also compare the skill of SALSA2.0 in reproducing the observed quantities to the skill of the M7 implementation. The largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol the ability of M7 to simulate the volcano plume was improved by modifying the mode widths decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g size dependent emissions for aerosol species and size resolved wet deposition.


2012 ◽  
Vol 51 (4) ◽  
pp. 799-812 ◽  
Author(s):  
Yu Liu ◽  
Xuepeng Zhao ◽  
Weiliang Li ◽  
Xiuji Zhou

AbstractThe Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products from 1998 to 2004 have been analyzed for the tendency of changes in background stratospheric aerosol properties. The aerosol extinction coefficient E has apparently increased in the midlatitude lower stratosphere (LS) in both hemispheres, at an annual rate that is as great as 2%–5%. Positive changes in the aerosol surface area density S in the midlatitude LS are most distinct, with a rate of increase that is as high as 5%–6% annually. At the same time, there has been a secular decrease in aerosol effective radius R, especially in the tropical LS, at a rate of up to −2.5% yr−1. Corresponding to these trends, the aerosol number concentration is inferred to have increased by roughly 5%–10% yr−1 in the tropical LS and by 4%–8% yr−1 in the midlatitude LS. Changes in aerosol mass are also deduced, with rates of increase in the midlatitude LS that are in the range of 1%–5% yr−1. The large uncertainty in operational S product is the major factor influencing the trend in S, aerosol number concentrations, and mass. The authors’ global assessment supports the speculation of Hofmann et al. on the basis of local observations that the cause of an increase in lidar backscatter over a similar period was a consequence of aerosol particle growth due to enhanced anthropogenic sulfur dioxide emissions. Moreover, it is found that an increase in the injection rate of condensation nuclei from the troposphere to the stratosphere at tropical latitudes is required to sustain the increase in stratospheric aerosol concentrations identified in this analysis.


2017 ◽  
Vol 17 (21) ◽  
pp. 13139-13150 ◽  
Author(s):  
Laura E. Revell ◽  
Andrea Stenke ◽  
Beiping Luo ◽  
Stefanie Kremser ◽  
Eugene Rozanov ◽  
...  

Abstract. To simulate the impacts of volcanic eruptions on the stratosphere, chemistry–climate models that do not include an online aerosol module require temporally and spatially resolved aerosol size parameters for heterogeneous chemistry and aerosol radiative properties as a function of wavelength. For phase 1 of the Chemistry-Climate Model Initiative (CCMI-1) and, later, for phase 6 of the Coupled Model Intercomparison Project (CMIP6) two such stratospheric aerosol data sets were compiled, whose functional capability and representativeness are compared here. For CCMI-1, the SAGE-4λ data set was compiled, which hinges on the measurements at four wavelengths of the SAGE (Stratospheric Aerosol and Gas Experiment) II satellite instrument and uses ground-based lidar measurements for gap-filling immediately after the 1991 Mt Pinatubo eruption, when the stratosphere was too optically opaque for SAGE II. For CMIP6, the new SAGE-3λ data set was compiled, which excludes the least reliable SAGE II wavelength and uses measurements from CLAES (Cryogenic Limb Array Etalon Spectrometer) on UARS, the Upper Atmosphere Research Satellite, for gap-filling following the Mt Pinatubo eruption instead of ground-based lidars. Here, we performed SOCOLv3 (Solar Climate Ozone Links version 3) chemistry–climate model simulations of the recent past (1986–2005) to investigate the impact of the Mt Pinatubo eruption in 1991 on stratospheric temperature and ozone and how this response differs depending on which aerosol data set is applied. The use of SAGE-4λ results in heating and ozone loss being overestimated in the tropical lower stratosphere compared to observations in the post-eruption period by approximately 3 K and 0.2 ppmv, respectively. However, less heating occurs in the model simulations based on SAGE-3λ, because the improved gap-filling procedures after the eruption lead to less aerosol loading in the tropical lower stratosphere. As a result, simulated tropical temperature anomalies in the model simulations based on SAGE-3λ for CMIP6 are in excellent agreement with MERRA and ERA-Interim reanalyses in the post-eruption period. Less heating in the simulations with SAGE-3λ means that the rate of tropical upwelling does not strengthen as much as it does in the simulations with SAGE-4λ, which limits dynamical uplift of ozone and therefore provides more time for ozone to accumulate in tropical mid-stratospheric air. Ozone loss following the Mt Pinatubo eruption is overestimated by up to 0.1 ppmv in the model simulations based on SAGE-3λ, which is a better agreement with observations than in the simulations based on SAGE-4λ. Overall, the CMIP6 stratospheric aerosol data set, SAGE-3λ, allows SOCOLv3 to more accurately simulate the post-Pinatubo eruption period.


2018 ◽  
Vol 11 (9) ◽  
pp. 3833-3863 ◽  
Author(s):  
Harri Kokkola ◽  
Thomas Kühn ◽  
Anton Laakso ◽  
Tommi Bergman ◽  
Kari E. J. Lehtinen ◽  
...  

Abstract. In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol–chemistry–climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation within ECHAM-HAMMOZ is evaluated against observations of aerosol optical properties, aerosol mass, and size distributions, comparing also to the skill of the M7 implementation. The largest differences between the implementation of SALSA2.0 and M7 are in the methods used for calculating microphysical processes, i.e., nucleation, condensation, coagulation, and hydration. These differences in the microphysics are reflected in the results so that the largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt. Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol, the ability of M7 to simulate the volcano plume was improved by modifying the mode widths, decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2 similar to what was observed after the Mt. Pinatubo eruption. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g., size-dependent emissions for aerosol species and size-resolved wet deposition.


2021 ◽  
Author(s):  
Laura Tomsche ◽  
Andreas Marsing ◽  
Tina Jurkat-Witschas ◽  
Johannes Lucke ◽  
Katharina Kaiser ◽  
...  

<p>Extreme volcanic eruptions inject significant amounts of sulfur-containing species into the lower stratosphere and sustain the stratospheric aerosol layer which tends to cool the atmosphere and surface temperatures.</p><p>During the BLUESKY campaign in May/June 2020, the aerosol composition and its precursor gas SO2 were measured with a time-of-flight aerosol mass spectrometer onboard the research aircraft HALO and with a atmospheric chemical ionization mass spectrometer onboard the DLR Falcon. While SO2 was slightly above background levels in the lower stratosphere above Europe, the aerosol mass spectrometer detected an extended aerosol layer. This sulfate aerosol layer was observed on most of the HALO flights and the sulfate mixing ratio increased significantly between 10 and 14 km altitude. Back trajectory calculations show no recent transport of polluted boundary layer air or ground-based emissions into the lower stratosphere. Therefore, we suggest that the stratospheric sulfate aerosol layer might be attributed to the aged stratospheric plume of the volcano Raikoke in Japan. In June 2019, Raikoke injected huge amounts of SO2 into the lower stratosphere, which were converted to sulfate and contributed to the stratospheric aerosol layer. This decaying volcanic aerosol layer was observed with the aerosol mass spectrometer over Europe a year after the eruption. The long-term volcanic remnants enhance the total stratospheric aerosol surface area, facilitate heterogeneous reactions on these particles and provide additional cloud condensation nuclei in the UTLS. They further offset some of the reduced sulfur burden from aviation that was observed during the COVID-19 lockdown in 2020. <br>The sensitive and highly time resolved airborne measurements of composition and size of stratospheric aerosol from an explosive volcanic eruption help to better constrain sulfur chemistry in the lower stratosphere, validate satellite observations near their detection threshold and can be used to evaluate dispersion and chemistry-climate models on long-term effects of volcanic aerosol. </p>


2021 ◽  
Vol 14 (5) ◽  
pp. 2659-2689
Author(s):  
Yann Cohen ◽  
Virginie Marécal ◽  
Béatrice Josse ◽  
Valérie Thouret

Abstract. A wide variety of observation data sets are used to assess long-term simulations provided by chemistry–climate models (CCMs) and chemistry-transport models (CTMs). However, the upper troposphere–lower stratosphere (UTLS) has hardly been assessed in these modelling exercises yet. Observations performed in the framework of IAGOS (In-service Aircraft for a Global Observing System) combine the advantages of in situ airborne measurements in the UTLS with an almost-global-scale sampling, a ∼20-year monitoring period and a high frequency. Even though a few model assessments have been made using the IAGOS database, none of them took advantage of the dense and high-resolution cruise data in their whole ensemble yet. The present study proposes a method to compare this large IAGOS data set to long-term simulations used for chemistry–climate studies. As a first application, the REF-C1SD reference simulation generated by the MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) CTM in the framework of Chemistry-Climate Model Initiative (CCMI) phase I has been evaluated during the 1994–2013 period for ozone (O3) and the 2002–2013 period for carbon monoxide (CO). The concept of the new comparison software proposed here (so-called Interpol-IAGOS) is to project all IAGOS data onto the 3-D grid of the model with a monthly resolution, since generally the 3-D outputs provided by chemistry–climate models for multi-model comparisons on multi-decadal timescales are archived as monthly means. This provides a new IAGOS data set (IAGOS-DM) mapped onto the model's grid and time resolution. To get a model data set consistent with IAGOS-DM for the comparison, a subset of the model's outputs is created (MOCAGE-M) by applying a mask that retains only the model data at the available IAGOS-DM grid points. Climatologies are derived from the IAGOS-DM product, and good correlations are reported between with the MOCAGE-M spatial distributions. As an attempt to analyse MOCAGE-M behaviour in the upper troposphere (UT) and the lower stratosphere (LS) separately, UT and LS data in IAGOS-DM were sorted according to potential vorticity. From this, we derived O3 and CO seasonal cycles in eight regions well sampled by IAGOS flights in the northern midlatitudes. They are remarkably well reproduced by the model for lower-stratospheric O3 and also good for upper-tropospheric CO. Along this model evaluation, we also assess the differences caused by the use of a weighting function in the method when projecting the IAGOS data onto the model grid compared to the scores derived in a simplified way. We conclude that the data projection onto the model's grid allows us to filter out biases arising from either spatial or temporal resolution, and the use of a weighting function yields different results, here by enhancing the assessment scores. Beyond the MOCAGE REF-C1SD evaluation presented in this paper, the method could be used by CCMI models for individual assessments in the UTLS and for model intercomparisons with respect to the IAGOS data set.


2014 ◽  
Vol 14 (20) ◽  
pp. 11221-11246 ◽  
Author(s):  
S. S. Dhomse ◽  
K. M. Emmerson ◽  
G. W. Mann ◽  
N. Bellouin ◽  
K. S. Carslaw ◽  
...  

Abstract. We use a stratosphere–troposphere composition–climate model with interactive sulfur chemistry and aerosol microphysics, to investigate the effect of the 1991 Mount Pinatubo eruption on stratospheric aerosol properties. Satellite measurements indicate that shortly after the eruption, between 14 and 23 Tg of SO2 (7 to 11.5 Tg of sulfur) was present in the tropical stratosphere. Best estimates of the peak global stratospheric aerosol burden are in the range 19 to 26 Tg, or 3.7 to 6.7 Tg of sulfur assuming a composition of between 59 and 77 % H2SO4. In light of this large uncertainty range, we performed two main simulations with 10 and 20 Tg of SO2 injected into the tropical lower stratosphere. Simulated stratospheric aerosol properties through the 1991 to 1995 period are compared against a range of available satellite and in situ measurements. Stratospheric aerosol optical depth (sAOD) and effective radius from both simulations show good qualitative agreement with the observations, with the timing of peak sAOD and decay timescale matching well with the observations in the tropics and mid-latitudes. However, injecting 20 Tg gives a factor of 2 too high stratospheric aerosol mass burden compared to the satellite data, with consequent strong high biases in simulated sAOD and surface area density, with the 10 Tg injection in much better agreement. Our model cannot explain the large fraction of the injected sulfur that the satellite-derived SO2 and aerosol burdens indicate was removed within the first few months after the eruption. We suggest that either there is an additional alternative loss pathway for the SO2 not included in our model (e.g. via accommodation into ash or ice in the volcanic cloud) or that a larger proportion of the injected sulfur was removed via cross-tropopause transport than in our simulations. We also critically evaluate the simulated evolution of the particle size distribution, comparing in detail to balloon-borne optical particle counter (OPC) measurements from Laramie, Wyoming, USA (41° N). Overall, the model captures remarkably well the complex variations in particle concentration profiles across the different OPC size channels. However, for the 19 to 27 km injection height-range used here, both runs have a modest high bias in the lowermost stratosphere for the finest particles (radii less than 250 nm), and the decay timescale is longer in the model for these particles, with a much later return to background conditions. Also, whereas the 10 Tg run compared best to the satellite measurements, a significant low bias is apparent in the coarser size channels in the volcanically perturbed lower stratosphere. Overall, our results suggest that, with appropriate calibration, aerosol microphysics models are capable of capturing the observed variation in particle size distribution in the stratosphere across both volcanically perturbed and quiescent conditions. Furthermore, additional sensitivity simulations suggest that predictions with the models are robust to uncertainties in sub-grid particle formation and nucleation rates in the stratosphere.


2015 ◽  
Vol 112 (45) ◽  
pp. 13789-13793 ◽  
Author(s):  
Maria A. Navarro ◽  
Elliot L. Atlas ◽  
Alfonso Saiz-Lopez ◽  
Xavier Rodriguez-Lloveras ◽  
Douglas E. Kinnison ◽  
...  

Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.


2019 ◽  
Vol 12 (9) ◽  
pp. 3863-3887 ◽  
Author(s):  
Aryeh Feinberg ◽  
Timofei Sukhodolov ◽  
Bei-Ping Luo ◽  
Eugene Rozanov ◽  
Lenny H. E. Winkel ◽  
...  

Abstract. SOCOL-AERv1 was developed as an aerosol–chemistry–climate model to study the stratospheric sulfur cycle and its influence on climate and the ozone layer. It includes a sectional aerosol model that tracks the sulfate particle size distribution in 40 size bins, between 0.39 nm and 3.2 µm. Sheng et al. (2015) showed that SOCOL-AERv1 successfully matched observable quantities related to stratospheric aerosol. In the meantime, SOCOL-AER has undergone significant improvements and more observational datasets have become available. In producing SOCOL-AERv2 we have implemented several updates to the model: adding interactive deposition schemes, improving the sulfate mass and particle number conservation, and expanding the tropospheric chemistry scheme. We compare the two versions of the model with background stratospheric sulfate aerosol observations, stratospheric aerosol evolution after Pinatubo, and ground-based sulfur deposition networks. SOCOL-AERv2 shows similar levels of agreement as SOCOL-AERv1 with satellite-measured extinctions and in situ optical particle counter (OPC) balloon flights. The volcanically quiescent total stratospheric aerosol burden simulated in SOCOL-AERv2 has increased from 109 Gg of sulfur (S) to 160 Gg S, matching the newly available satellite estimate of 165 Gg S. However, SOCOL-AERv2 simulates too high cross-tropopause transport of tropospheric SO2 and/or sulfate aerosol, leading to an overestimation of lower stratospheric aerosol. Due to the current lack of upper tropospheric SO2 measurements and the neglect of organic aerosol in the model, the lower stratospheric bias of SOCOL-AERv2 was not further improved. Model performance under volcanically perturbed conditions has also undergone some changes, resulting in a slightly shorter volcanic aerosol lifetime after the Pinatubo eruption. With the improved deposition schemes of SOCOL-AERv2, simulated sulfur wet deposition fluxes are within a factor of 2 of measured deposition fluxes at 78 % of the measurement stations globally, an agreement which is on par with previous model intercomparison studies. Because of these improvements, SOCOL-AERv2 will be better suited to studying changes in atmospheric sulfur deposition due to variations in climate and emissions.


Sign in / Sign up

Export Citation Format

Share Document