Remote Sensing Measurements of Carbon Dioxide and Methane over Northern Finland

Author(s):  
Rigel Kivi ◽  
Juha Hatakka ◽  
Pauli Heikkinen ◽  
Tuomas Laurila ◽  
Hannakaisa Lindqvist ◽  
...  

<p>Remote sensing measurements of carbon dioxide and methane at the Sodankylä facility in northern Finland cover a 12-year time period. The measurements have been taken by a Fourier Transform Spectrometer (FTS), operating in the near-infrared spectral region.  The Sodankylä site is participating in the Total Carbon Column Observing Network (TCCON). Here we present long-term measurements of column-averaged, dry-air mole fractions of carbon dioxide and methane and comparisons with satellite borne measurements. The relevant satellite missions include the TROPOspheric Monitoring Instrument (TROPOMI) on board of the Copernicus Sentinel-5 Precursor satellite, the Orbiting Carbon Observatory-2 (OCO-2) and the Greenhouse Gases Observing Satellite (GOSAT). We have performed AirCore observations in the vicinity of the TCCON instrument at Sodankylä during all seasons. AirCore measurements are directly related to the World Meteorological Organization in situ trace gas measurement scales. The AirCore data are used in this study to provide comparisons with remote sensing retrievals.</p>

2020 ◽  
Author(s):  
Rigel Kivi ◽  
Huilin Chen ◽  
Juha Hatakka ◽  
Pauli Heikkinen ◽  
Tuomas Laurila ◽  
...  

<p>Carbon dioxide and methane column measurement at the Finnish Meteorological Institute’s Sodankylä facility in northern Finland started in early 2009. The measurements have been taken by a Fourier Transform Spectrometer (FTS) in the near-infrared spectral region. From the spectra column-averaged abundances of CO<sub>2</sub>, CH<sub>4</sub> and other gases are derived. The instrument participates in the Total Carbon Column Observing Network (TCCON).  Here we present long-term ground based FTS measurements of carbon dioxide and methane and comparisons with satellite borne observations. We find that CO<sub>2</sub> column amounts have increased by 2.2 ± 0.1 ppm/year since the start of the measurements in 2009 and CH<sub>4</sub> column amounts have increased by 7 ± 0.4 ppb/year. The measurements are in good agreement with multi-year measurements by the Greenhouse Gases Observing Satellite (GOSAT): the relative difference in XCH<sub>4</sub> has been -0.07 ± 0.02 % and the relative difference in XCO<sub>2</sub> has been 0.04 ± 0.02 %. Finally we use balloon borne AirCore observations at the Sodankylä site to provide comparisons between FTS and in situ observations during all seasons.</p>


2010 ◽  
Vol 3 (4) ◽  
pp. 3987-4007
Author(s):  
M. Schneider ◽  
E. Sepúlveda ◽  
O. García ◽  
F. Hase ◽  
T. Blumenstock

Abstract. We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON) can be used to derive the vertical distribution of tropospheric water vapour. Using spectral H2O signatures in the 4500–4700 cm−1 region one can well distinguish lower from middle/upper tropospheric water vapour concentrations. The vertical resolution is about 3 and 6 km, for the lower and middle/upper troposphere, respectively. We document the quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. The agreement of both techniques is very satisfactory. Due to the long-term strategy of the network and the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different time scales and altitudes.


Author(s):  
Debra Wunch ◽  
Geoffrey C. Toon ◽  
Jean-François L. Blavier ◽  
Rebecca A. Washenfelder ◽  
Justus Notholt ◽  
...  

A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO 2 , CO, CH 4 , N 2 O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO 2 ). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.


2010 ◽  
Vol 3 (5) ◽  
pp. 1351-1362 ◽  
Author(s):  
D. Wunch ◽  
G. C. Toon ◽  
P. O. Wennberg ◽  
S. C. Wofsy ◽  
B. B. Stephens ◽  
...  

Abstract. The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. These calibrations are compared with similar observations made in 2004 and 2006. The results indicate that a single, global calibration factor for each gas accurately captures the TCCON total column data within error.


2020 ◽  
Author(s):  
Matthaeus Kiel ◽  
Joshua Laughner ◽  
Annmarie Eldering ◽  
Brendan Fisher ◽  
Thomas Kurosu ◽  
...  

<p>The Orbiting Carbon Observatory-3 (OCO-3) was successfully launched on May 4, 2019 from Kennedy Space Center via a Space-X Falcon 9. One week later, the instrument was installed as an external payload on the International Space Station (ISS). OCO-3 extends NASA’s study of carbon and measures the dry-air mole fraction of column carbon dioxide (XCO2) in the Earth’s atmosphere from space.</p><p>These space-based measurements are compared to ground-based observations from the Total Carbon Column Observing Network (TCCON). TCCON is a global network of high-resolution ground-based Fourier Transform Spectrometers that records spectra of the sun in the near-infrared spectral region. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2 are retrieved. TCCON data are tied to the WMO scale and serve as the link between calibrated surface in situ measurements and OCO-3 measurements.</p><p>OCO-3’s agile 2-D pointing mirror assembly (PMA) allows the instrument to stare at a TCCON station as it passes overhead - providing information about the quality, biases, and errors in the OCO-3 data. Here, we show early comparisons between the OCO-3 XCO2 dataset collected during target mode observations and coincident TCCON measurements and discuss site-dependent biases and its potential origins.</p>


2010 ◽  
Vol 3 (3) ◽  
pp. 2603-2632 ◽  
Author(s):  
D. Wunch ◽  
G. C. Toon ◽  
P. O. Wennberg ◽  
S. C. Wofsy ◽  
B. B. Stephens ◽  
...  

Abstract. The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO2, CO, CH4, N2O and H2O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.


1975 ◽  
Vol 10 (1) ◽  
pp. 33-41 ◽  
Author(s):  
J. Butcher ◽  
M. Boyer ◽  
CD. Fowle

Abstract Eleven small ponds, lined with polyethylene, were used to assess the consequences of applications of *DursbanR at 0.004, 0.030, 0.100 and 1.000 ppm and AbateR at 0.025 and 0.100 ppm active ingredient. The treated ponds showed a more pronounced long-term increase in pH and dissolved oxygen and decreasing total and dissolved carbon dioxide in comparison with untreated ponds. Algal blooms were of longer duration in treated ponds than in controls. Total photosynthetic productivity was higher in treated ponds but bacterial numbers did not change significantly. Photosynthetic productivity was estimated by following the changes in total carbon dioxide.


2016 ◽  
Vol 9 (6) ◽  
pp. 2445-2461 ◽  
Author(s):  
Akihiko Kuze ◽  
Hiroshi Suto ◽  
Kei Shiomi ◽  
Shuji Kawakami ◽  
Makoto Tanaka ◽  
...  

Abstract. A data set containing more than 6 years (February 2009 to present) of radiance spectra for carbon dioxide (CO2) and methane (CH4) observations has been acquired by the Greenhouse gases Observing SATellite (GOSAT, available at http://data.gosat.nies.go.jp/GosatUserInterfaceGateway/guig/GuigPage/open.do), nicknamed “Ibuki”, Thermal And Near infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO-FTS). This paper provides updates on the performance of the satellite and TANSO-FTS sensor and describes important changes to the data product, which has recently been made available to users. With these changes the typical accuracy of retrieved column-averaged dry air mole fractions of CO2 and CH4 (XCO2 and XCH4, respectively) are 2 ppm or 0.5 % and 13 ppb or 0.7 %, respectively. Three major anomalies of the satellite system affecting TANSO-FTS are reported: a failure of one of the two solar paddles in May 2014, a switch to the secondary pointing system in January 2015, and most recently a cryocooler shutdown and restart in August 2015. The Level 1A (L1A) (raw interferogram) and the Level 1B (L1B) (radiance spectra) of version V201 described here have long-term uniform quality and provide consistent retrieval accuracy even after the satellite system anomalies. In addition, we discuss the unique observation abilities of GOSAT made possible by an agile pointing mechanism, which allows for optimization of global sampling patterns.


2017 ◽  
Vol 10 (6) ◽  
pp. 2077-2091 ◽  
Author(s):  
Sabina Assan ◽  
Alexia Baudic ◽  
Ali Guemri ◽  
Philippe Ciais ◽  
Valerie Gros ◽  
...  

Abstract. Due to increased demand for an understanding of CH4 emissions from industrial sites, the subject of cross sensitivities caused by absorption from multiple gases on δ13CH4 and C2H6 measured in the near-infrared spectral domain using CRDS has become increasingly important. Extensive laboratory tests are presented here, which characterize these cross sensitivities and propose corrections for the biases they induce. We found methane isotopic measurements to be subject to interference from elevated C2H6 concentrations resulting in heavier δ13CH4 by +23.5 ‰ per ppm C2H6 ∕ ppm CH4. Measured C2H6 is subject to absorption interference from a number of other trace gases, predominantly H2O (with an average linear sensitivity of 0.9 ppm C2H6 per  % H2O in ambient conditions). Yet, this sensitivity was found to be discontinuous with a strong hysteresis effect and we suggest removing H2O from gas samples prior to analysis. The C2H6 calibration factor was calculated using a GC and measured as 0.5 (confirmed up to 5 ppm C2H6). Field tests at a natural gas compressor station demonstrated that the presence of C2H6 in gas emissions at an average level of 0.3 ppm shifted the isotopic signature by 2.5 ‰, whilst after calibration we find that the average C2H6 : CH4 ratio shifts by +0.06. These results indicate that, when using such a CRDS instrument in conditions of elevated C2H6 for CH4 source determination, it is imperative to account for the biases discussed within this study.


2022 ◽  
Author(s):  
Zhuoyao Ni ◽  
jiajie hu ◽  
Hui Zhu ◽  
Yazhuo Shang ◽  
Daijie Chen ◽  
...  

Antibiotic resistance caused by long-term abuse of antibiotics has inevitably become a very serious problem and developing novel strategies to enhance the efficacy of treatments is exigent. Herein, a dual-antibacterial...


Sign in / Sign up

Export Citation Format

Share Document