PANDA, the French analytical platform dedicated to ice core

Author(s):  
Sophie Darfeuil ◽  
Patrick Ginot ◽  
Joel Savarino ◽  
Nicolas Caillon ◽  
Xavier Faïn ◽  
...  

<p>Since 2018, under the impetus of the IGE (Grenoble) and the LSCE (Saclay) and the common interest of the "Carottes de Glace France" consortium, an analytical platform dedicated to glacier archives was created to meet the growing analytical needs requested by projects involving French partners (Ice Memory, EAIIST, BE-OI ...) and international collaborations with a ten-year vision. Within this framework 5 modules have been developed between the IGE and the LSCE. 3 modules are installed at the IGE, including a CHEMISTRY module which includes a large number of instruments coupled to the CFA (Continuous Flow Analysis) system, allowing high-resolution multi tracer analysis on a single ice stick (water isotopes, dust, conductivity, colorimetry, black carbon, trace metals and gas) as well as several auto-samplers for discrete analyses (major ions, organic species, trace metals, sugars ...). The GAS module is shared between continuous analyses on the CFA system (laser spectrometry CH<sub>4</sub>/CO) and discrete analyses (Gas chromatography CH<sub>4</sub>/CO<sub>2</sub>). The ISOTOPY module allows the analysis of nitrogen (N), sulfur (S) and oxygen (O) isotopes. At the LSCE, the WATER ISOTOPY module allows continuous (Picarro coupled to a CFA line equipped with conductivity cells and auto-sampler) or discrete (Picarro or mass spectrometer) analyses for δD, δ<sup>18</sup>O and δ<sup>17</sup>O in water. The AIR ISOTOPY module completes the platform for analyses by mass spectrometry of δ<sup>15</sup>N of N<sub>2</sub>, the triple isotopic composition of O<sub>2</sub> and noble gases isotopes (36/38/40 Ar; 82/84/86 Kr; 129-132 Xe). An overview of the capacity and performance of the platform will be presented.</p>

2007 ◽  
Vol 45 ◽  
pp. 178-182 ◽  
Author(s):  
Matthias Bigler ◽  
Anders Svensson ◽  
Jørgen Peder Steffensen ◽  
Patrik Kaufmann

AbstractSulphate (SO42–) is a major ion found in polar ice cores and is related to different aerosol sources and processes. Explosive volcanic eruptions, even far away, can cause distinct sulphate peaks in ice core records. Thus, a robust sulphate detection system which is suitable for fieldwork and which enables the measurement of sulphate at high temporal resolution is of great interest. In this study, we present the adaptation of a new continuous flow analysis system for sulphate that is based on a spectrophotometric method using dimethylsulfonazo III and an inline reactor column containing barium sulphate particles. The method shows a detection limit of ∽70 ng g–1 and a linear range up to at least 3000 ng g–1. It is simple, robust and less prone to interferences compared to the previously used method.


2021 ◽  
Author(s):  
Margaret Harlan ◽  
Helle Astrid Kjær ◽  
Tessa Vance ◽  
Paul Vallelonga ◽  
Vasileios Gkinis ◽  
...  

<p>The Mount Brown South (MBS) ice core is an approximately 300-meter-long ice core, drilled in 2016-2017 to the south of Mount Brown, Wilhelm II Land, East Antarctica. This location in East Antarctica was chosen as it produces an ice core with well-preserved sub-annual records of both chemistry and isotope concentrations, spanning back over 1000 years. MBS is particularly well suited to represent climate variations of the Indian Ocean sector of Antarctica, and to provide information about regional volcanism in the Southern Indian Ocean region.</p><p>A section of ice spanning the length of the MBS core was melted as part of the autumn 2019 continuous flow analysis (CFA) campaign at the Physics of Ice, Climate, and Earth (PICE) group at the University of Copenhagen. During this campaign, measurements were conducted for chemistry and impurities contained in the ice, in addition to water isotopes. The data measured in Copenhagen include measurements of H<sub>2</sub>O<sub>2,</sub> pH, electrolytic conductivity, and NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>, and Na<sup>+</sup> ions, in addition to insoluble particulate concentrations and size distribution measured using an Abakus laser particle counter.</p><p>Here, we present an overview of the CFA chemistry and impurity data, as well as preliminary investigations into the size distribution of insoluble particles and the presence of volcanic material within the ice. These initial chemistry and particulate size distribution data sets are useful in order to identify sections of the MBS core to subject to further analysis to increase our understanding of volcanic activity in the Southern Indian Ocean region.</p>


2018 ◽  
Vol 11 (8) ◽  
pp. 4725-4736 ◽  
Author(s):  
Elizabeth D. Keller ◽  
W. Troy Baisden ◽  
Nancy A. N. Bertler ◽  
B. Daniel Emanuelsson ◽  
Silvia Canessa ◽  
...  

Abstract. We describe a systematic approach to the calibration and uncertainty estimation of a high-resolution continuous flow analysis (CFA) water isotope (δ2H, δ18O) record from the Roosevelt Island Climate Evolution (RICE) Antarctic ice core. Our method establishes robust uncertainty estimates for CFA δ2H and δ18O measurements, comparable to those reported for discrete sample δ2H and δ18O analysis. Data were calibrated using a time-weighted two-point linear calibration with two standards measured both before and after continuously melting 3 or 4 m of ice core. The error at each data point was calculated as the quadrature sum of three factors: Allan variance error, scatter over our averaging interval (error of the variance) and calibration error (error of the mean). Final mean total uncertainty for the entire record is δ2H=0.74 ‰ and δ18O=0.21 ‰. Uncertainties vary through the data set and were exacerbated by a range of factors, which typically could not be isolated due to the requirements of the multi-instrument CFA campaign. These factors likely occurred in combination and included ice quality, ice breaks, upstream equipment failure, contamination with drill fluid and leaks or valve degradation. We demonstrate that our methodology for documenting uncertainty was effective across periods of uneven system performance and delivered a significant achievement in the precision of high-resolution CFA water isotope measurements.


2017 ◽  
Vol 10 (2) ◽  
pp. 617-632 ◽  
Author(s):  
Tyler R. Jones ◽  
James W. C. White ◽  
Eric J. Steig ◽  
Bruce H. Vaughn ◽  
Valerie Morris ◽  
...  

Abstract. Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components – useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver  ∼  1 m  ×  1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2  mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.


2002 ◽  
Vol 35 ◽  
pp. 250-256 ◽  
Author(s):  
Matthias Bigler ◽  
Dietmar Wagenbach ◽  
Hubertus Fischer ◽  
Josef Kipfstuhl ◽  
Heinrich Miller ◽  
...  

AbstractA 150 m deep ice core from the low-accumulation area of northeast Greenland was analyzed for sulphate, calcium, sodium and electrolytical meltwater conductivity at a depth resolution of approximately 1 cm by continuous flow analysis (CFA). the calcium and sodium profiles are used to establish a relatively precise ice-core chronology by annual-layer counting back to AD 830. Inspection of the novel CFA method for sulphate revealed relative errors typically around 15%, but at least ±20 ng g–1, for concentrations 5130 ng g–1, and a current detection limit for routine ice-core analyses of 40 ng g–1. Annual sulphate peaks are shown to occur over almost the entire core, with only a small shift in seasonality between the modern and pre-industrial sections. Inspection of volcanic horizons allowed more accurate timing of these peaks and clear identification of calcium-rich events. Disregarding clear volcanic peaks, significant long-term changes of sulphate are only seen over the industrial period. However, a higher frequency of important volcanic inputs was identified around AD 1200.


Author(s):  
T. F. Hartley

Species in urine which were likely to interfere with the determination of ammonia by Nesslerisation were adsorbed onto a precipitate of zinc hydroxide formed in situ in each sample. The ammonia concentrations in the subsequent supernatant solutions were measured using the Nessler method, adapted for use on a continuous flow analysis system. These measurements were made against a series of standards prepared from Analar grade ammonium chloride. The accuracy, reproducibility, and sensitivity of this adaptation were examined and were found to be within acceptable limits.


2016 ◽  
Author(s):  
Tyler R. Jones ◽  
James W. C. White ◽  
Eric J. Steig ◽  
Bruce H. Vaughn ◽  
Valerie Morris ◽  
...  

Abstract. Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometers (LAS) perform as well or better than IRMS. The new LAS technology has been combined with continuous flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system uncertainty and system mixing length into liquid and vapor components – useful measures for defining and improving the overall performance of the system. Critically, our methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. We also explain a method for introducing consecutive sections of isotopically distinct ice at the melt head to define the system-wide mixing length. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the WAIS Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ~ 1 m × 1.3 cm2 ice sticks to a temperature controlled melt head, where the ice is converted to a continuous liquid stream, and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the VSMOW-SLAP scale and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on our system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS-CFA systems, including optimizing liquid and vapor mixing lengths, determining melt rates for ice cores with different accumulation and thinning histories, and removing system-wide mixing effects that are convolved with the natural diffusional signal that results primarily from water molecule diffusion in the firn column.


2021 ◽  
Author(s):  
Helle Astrid Kjær ◽  
Margaret Harlan ◽  
Paul Vallelonga ◽  
Anders Svensson ◽  
Thomas Blunier ◽  
...  

<div><span><span>The Dye-3 ice core was drilled to bedrock at the Southern part of the central Greenland ice sheet (65°11'N, 43°50'W) in 1979-1981. The southern location is characterized by high accumulation rates compared to more central locations of the ice sheet. Since its drilling, numerous analyses of the core have been performed, and the ice has since been in freezer storage both in the USA and in Denmark.</span></span></div><div><span>In October and November 2019, the remaining ice, two mostly complete sections covering the depths of 1753–1820m and 1865–1918m of the Dye-3 core, were melted during a continuous flow analysis (CFA) campaign at the Physics of Ice, Climate, and Earth (PICE) group at the University of Copenhagen. The data represents both Holocene, Younger Dryas and Glacial sections (GS 5 to 12).</span></div><div> </div><div><span><span>The measured data consist chemistry and impurities contained in the ice, isotopes, as well as analysis of methane and other atmospheric gases. </span></span></div><div><span><span>The chemistry measurements include NH</span></span><span><span><sub>4</sub></span></span><span><span><sup>+</sup></span></span><span><span>, Ca</span></span><span><span><sup>2+</sup></span></span><span><span>, and Na</span></span><span><span><sup>+</sup></span></span><span><span> ions, which besides being influenced by transport, provide information about forest fires, wind-blown dust, and sea ice, respectively, as well as acidity, which aids in the identification of volcanic events contained in the core. The quantity and grain size distribution of insoluble particles was analyzed by means of an Abakus laser particle counter.</span></span></div><div> </div><div><span>We compare the new high-resolution CFA record of dye3 with previous analysis and thus evaluate the progress made over 40 years. Further we compare overlapping time periods with other central Greenland ice cores and discuss spatial patterns in relation to the presented climate proxies.</span></div>


Sign in / Sign up

Export Citation Format

Share Document