Real time interactions between soil microorganisms and microplastics at microscale

Author(s):  
P. Micaela Mafla-Endara ◽  
Pelle Ohlsson ◽  
Edith Hammer

<p>Terrestrial ecosystems are under threat due to the continuous accumulation of plastics in soils. Particularly, microplastics have been proven to negatively affect the performance of soil macrofauna such as earthworms, as well as soil mesofauna including springtails and nematodes. Unfortunately, two big groups remain largely unexplored: the soil microfauna and microflora.</p><p>Recent studies have shown that soil microbial community composition can significantly vary depending on the concentration and type of plastic, favouring some groups and disfavouring others. To have a better understanding of these relationships, it is necessary to study them at relevant scale: the microscale.</p><p>Considering that in situ observations are hard to achieve due to the opacity of soil and ever-changing soil architecture, we used transparent micro-engineered chips to study interactions between microplastics and soil microorganisms live. We hypothesized that different concentrations of microplastics interfere with a natural microbial community in terms of 1. Soil microbial colonization/succession of the chips and 2. Soil microbial growth inside the chips’ pore space.</p><p>We fabricated chips containing different microstructures that simulate soil pore spaces. The chips were bonded to a glass slide and one side was opened to allow microbial colonization. Each chip was filled with a mix of liquid nutrient medium and 1.0 µm polystyrene microbeads at microplastic concentrations of 0.0, 0.006, 0.001 and 0.0005 mg/ml. The chip´s opening was inoculated with 5 g of soil and incubated in the laboratory at room temperature for one month. We documented the presence/absence and abundance of different soil microbial groups changing over time by using an inverted microscope.</p><p>Our preliminary study reveals that larger microorganisms are sensitive to the presence of microbeads 1.0 µm size. We found that all major soil microbial groups (fungi, bacteria, and protists) and nematodes colonized the chips. However, their abundance was affected by the presence of microplastics, irrespective of the concentration. Particularly protists and nematodes were lower in number during the first days of the exposure. The beads were clearly visibly taken up into the cells of the protists or the digestive tract of the nematodes.</p><p>We are now investigating what consequences the lower abundance of certain soil microbial groups have for the soil food web. As seen here, micro-engineered chips are useful tools to provide visual access at the scale where most cell-to-cell interactions occur.</p>

2021 ◽  
Vol 9 (2) ◽  
pp. 211
Author(s):  
Jie Gao ◽  
Miao Liu ◽  
Sixue Shi ◽  
Ying Liu ◽  
Yu Duan ◽  
...  

In this study, we analyzed microbial community composition and the functional capacities of degraded sites and restored/natural sites in two typical wetlands of Northeast China—the Phragmites marsh and the Carex marsh, respectively. The degradation of these wetlands, caused by grazing or land drainage for irrigation, alters microbial community components and functional structures, in addition to changing the aboveground vegetation and soil geochemical properties. Bacterial and fungal diversity at the degraded sites were significantly lower than those at restored/natural sites, indicating that soil microbial groups were sensitive to disturbances in wetland ecosystems. Further, a combined analysis using high-throughput sequencing and GeoChip arrays showed that the abundance of carbon fixation and degradation, and ~95% genes involved in nitrogen cycling were increased in abundance at grazed Phragmites sites, likely due to the stimulating impact of urine and dung deposition. In contrast, the abundance of genes involved in methane cycling was significantly increased in restored wetlands. Particularly, we found that microbial composition and activity gradually shifts according to the hierarchical marsh sites. Altogether, this study demonstrated that microbial communities as a whole could respond to wetland changes and revealed the functional potential of microbes in regulating biogeochemical cycles.


2021 ◽  
Vol 1 ◽  
Author(s):  
Min Wang ◽  
Qiuxiang Tian ◽  
Chang Liao ◽  
Rudong Zhao ◽  
Feng Liu

The input of dissolved organic carbon (DOC) into soil affects soil organic carbon mineralization and microbial community composition by changing carbon availability. However, up to now, there is little knowledge about the microbial groups that utilize the added DOC and how the incorporation process may vary over time. In this study, we added 13C-labeled litter-derived DOC (treatment) or pure water (control) to a forest soil from different layers to investigate the effects of DOC addition on soil microbial biomass and community composition in a 180-d laboratory incubation experiment. Soil microbial phospholipid fatty acid (PLFA) were measured to assess changes in the microbial community composition. The 13C incorporation into microbial biomass and PLFAs was analyzed to trace the microbial utilization of litter-derived DOC. Our results indicated that DOC addition increased the biomass of gram-negative bacteria, gram-positive bacteria, fungi, and actinomycetes, but the microbial community composition manifested a similar trend for both treatment and control soils at the end of incubation. Proportions of added DOC in different depths of soil microbial PLFAs had no significant difference. Moreover, 17:0 cy and 15:0 PLFAs which are described as the bacterial biomarkers had a greater amount of 13C incorporation than other PLFAs for the topsoil, which indicated that 13C-labeled litter-derived DOC was more easily assimilated by some specific bacterial community. Soil microbial biomass and the incorporation of 13C into PLFA reached its maximum around 30 days after DOC addition and then rapidly reduced to the level comparable to control. Overall, this study demonstrated that the incorporation of 13C-labeled litter-derived DOC into PLFA in different depth soil had no significant difference, and the incorporation of 13C by bacteria was higher than other microbial groups.


2021 ◽  
Author(s):  
Linya XU ◽  
Yuanhui LIU ◽  
Kankan ZHAO ◽  
Shan LIU ◽  
Erinne Stirling ◽  
...  

Abstract Earth is the cradle of mankind, but it is impossible for human beings to live in the cradle forever. Sending soil microbial spores through space to foreign planets will be a likely initial process in planet colonization. Periods of hyper-gravity are likely to be a challenge for the candidate microorganisms during their interstellar transportation, raising questions about their survival rates and community-level responses. To address these questions, the impacts of hyper-gravity on soil microbial community composition and activity were tested by applying 1×g or 2500×g centrifugal force to soil for 6 days. The results indicated an increased diversity and absolute abundance of soil total bacterial community and a relatively stable active bacterial community under hyper-gravity condition. Besides, hyper-gravity had no observable effect on the relative abundance of soil microorganisms. These results suggest that soil microorganisms could survive during short periods of hyper-gravity. Our findings represent the first step towards a better understanding of the potential for survival of soil microbiomes during space travel and provide a basis for further interstellar soil research.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Li ◽  
Kate Heal ◽  
Shuzhen Wang ◽  
Sheng Cao ◽  
Chuifan Zhou

The total dissolved organic matter (DOM) content of soil changes after vegetation transformation, but the diversity of the underlying chemical composition has not been explored in detail. Characterizing the molecular diversity of DOM and its fate enables a better understanding of the soil quality of monoculture forest plantations. This study characterized the chemodiversity of soil DOM, assessed the variation of the soil microbial community composition, and identified specific linkages between DOM molecules and microbial community composition in soil samples from a 100-year chronosequence of Chinese fir monoculture plantations. With increasing plantation age, soil total carbon and dissolved organic carbon first decreased and then increased, while soil nutrients, such as available potassium and phosphorus and total nitrogen, potassium, and phosphorus, increased significantly. Lignin/carboxylic-rich alicyclic molecule (CRAM)-like structures accounted for the largest proportion of DOM, while aliphatic/proteins and carbohydrates showed a decreasing trend along the chronosequence. DOM high in H/C (such as lipids and aliphatic/proteins) degraded preferentially, while low-H/C DOM (such as lignin/CRAM-like structures and tannins) showed recalcitrance during stand development. Soil bacterial richness and diversity increased significantly as stand age increased, while soil fungal diversity tended to increase during early stand development and then decrease. The soil microbial community had a complex connectivity and strong interaction with DOM during stand development. Most bacterial phyla, such as Acidobacteria, Chloroflexi, and Firmicutes, were very significantly and positively correlated with DOM molecules. However, Verrucomicrobia and almost all fungi, such as Basidiomycota and Ascomycota, were significantly negatively correlated with DOM molecules. Overall, the community of soil microorganisms interacted closely with the compositional variability of DOM in the monoculture plantations investigated, both by producing and consuming DOM. This suggests that DOM is not intrinsically recalcitrant but instead persists in soils as a result of simultaneous consumption, transformation, and formation by soil microorganisms with extended stand ages of Chinese fir plantations.


Author(s):  
Vincenza Cozzolino ◽  
Hiarhi Monda ◽  
Davide Savy ◽  
Vincenzo Di Meo ◽  
Giovanni Vinci ◽  
...  

Abstract Background Increasing the presence of beneficial soil microorganisms is a promising sustainable alternative to support conventional and organic fertilization and may help to improve crop health and productivity. If the application of single bioeffectors has shown satisfactory results, further improvements may arise by combining multiple beneficial soil microorganisms with natural bioactive molecules. Methods In the present work, we investigated in a pot experiment under greenhouse conditions whether inoculation of two phosphate-solubilizing bacteria, Pseudomonas spp. (B2) and Bacillus amyloliquefaciens (B3), alone or in combination with a humic acids (HA) extracted from green compost and/or a commercial inoculum (M) of arbuscular mycorrhizal fungi (AMF), may affect maize growth and soil microbial community. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis were performed to detect changes in the microbial community composition. Results Plant growth, N and P uptake, and mycorrhizal root colonization were found to be larger in all inoculated treatments than in the uninoculated control. The greatest P uptake was found when B. amyloliquefaciens was applied in combination with both HA and arbuscular mycorrhizal fungi (B3HAM), and when Pseudomonas was combined with HA (B2HA). The PLFA-based community profile revealed that inoculation changed the microbial community composition. Gram+/Gram− bacteria, AMF/saprotrophic fungi and bacteria/fungi ratios increased in all inoculated treatments. The greatest values for the AMF PLFA marker (C16:1ω5) and AMF/saprotrophic fungi ratio were found for the B3HAM treatment. Permutation test based on DGGE data confirmed a similar trend, with most significant variations in both bacterial and fungal community structures induced by inoculation of B2 or B3 in combination with HA and M, especially in B3HAM. Conclusions The two community-based datasets indicated changes in the soil microbiome of maize induced by inoculation of B2 or B3 alone or when combined with humic acids and mycorrhizal inoculum, leading to positive effects on plant growth and improved nutrient uptake. Our study implies that appropriate and innovative agricultural management, enhancing the potential contribution of beneficial soil microorganisms as AMF, may result in an improved nutrient use efficiency in plants.


2003 ◽  
Vol 69 (1) ◽  
pp. 483-489 ◽  
Author(s):  
Steven D. Siciliano ◽  
James J. Germida ◽  
Kathy Banks ◽  
Charles W. Greer

ABSTRACT The purpose of this study was to investigate the mechanism by which phytoremediation systems promote hydrocarbon degradation in soil. The composition and degradation capacity of the bulk soil microbial community during the phytoremediation of soil contaminated with aged hydrocarbons was assessed. In the bulk soil, the level of catabolic genes involved in hydrocarbon degradation (ndoB, alkB, and xylE) as well as the mineralization of hexadecane and phenanthrene was higher in planted treatment cells than in treatment cells with no plants. There was no detectable shift in the 16S ribosomal DNA (rDNA) composition of the bulk soil community between treatments, but there were plant-specific and -selective effects on specific catabolic gene prevalence. Tall Fescue (Festuca arundinacea) increased the prevalence of ndoB, alkB, and xylE as well as naphthalene mineralization in rhizosphere soil compared to that in bulk soil. In contrast, Rose Clover (Trifolium hirtum) decreased catabolic gene prevalence and naphthalene mineralization in rhizosphere soil. The results demonstrated that phytoremediation systems increase the catabolic potential of rhizosphere soil by altering the functional composition of the microbial community. This change in composition was not detectable by 16S rDNA but was linked to specific functional genotypes with relevance to petroleum hydrocarbon degradation.


Sign in / Sign up

Export Citation Format

Share Document