SpaCeborne SAR Interferometry as a Noninvasive tool to assess the vulnerability over Cultural hEritage sites (SCIENCE)

Author(s):  
Athanasia-Maria Tompolidi ◽  
Issaak Parcharidis ◽  
Constantinos Loupasakis ◽  
Michalis Fragkiadakis ◽  
Pantelis Soupios ◽  
...  

<p>Cultural heritage is a key element of history as the ancient monuments and archaeological sites enrich today’s societies and help connect us to our cultural origins. The project entitled ''SpaCeborne SAR Interferometry as a Nonivasive tool to assess the vulnerability over Cultural hEritage sites (SCIENCE)'' has as ultimate objective to predict the vulnerability of the archaeological sites to ground deformation in time and space and protect them against natural/man-made damage. The SCIENCE project aims to develop, demonstrate, and validate, in terms of geotechnical local conditions and monuments’ structural health, SAR interferometric techniques to monitor potential ground deformation affecting the archaeological sites and monuments of great importance. </p><p>During the last few years, spaceborne Synthetic Aperture Radar (SAR) interferometry has proven to be a powerful remote sensing tool for detecting and measuring ground deformation and studying the deformation’s impact on man-made structures. It provides centimeter to millimeter resolution and even single buildings/monuments can be mapped from space. Considering the limitations of conventional MT-InSAR techniques, such as Persistent Scatterers Interferometry (PSI), in this project a two-step Tomography-based Persistent Scatterers (PS) Interferometry (Tomo-PSInSAR) approach is proposed for monitoring ground deformation and structural instabilities over the Ancient City Walls (Ming Dynasty) in Nanjing city, China and in the Great Wall in Zhangjiakou, China. The Tomo-PSInSAR is capable of separating overlaid PS in the same location, minimizing the unfavorable layover effects of slant-range imaging in SAR data. Moreover, the demonstrations are performed on well-known test sites in China and in Greece, such as: a) Ming Dynasty City Walls in Nanjing, b) Great Wall in Zhangjiakou, c) Acropolis complex of Athens and d) Heraklion walls (Crete Island), respectively.</p><p>In particular, in the framework of SCIENCE project are processed several radar datasets such as Sentinel 1 A & B data of Copernicus program and the high resolution TerraSAR-X data. The products of Persistent Scatterers Interferometry (PSI) are exported in various formats for the identification of the persistent scatterers using high resolution optical images, aerial photographs and fusing with high accuracy Digital Surface Models (DSM). In addition, the validation of the results is taking place through in-situ measurements (geological, geothechnical e.t.c) and data for the cultural heritage sites conditions.</p><p>SCIENCE project’s final goal is the risk assessment analysis of the cultural heritage monuments and their surrounding areas aiming to benefit institutions, organizations, stakeholders and private agencies in the cultural heritage domain through the creation of a validated pre-operation non-invasive system and service based on earth observation data supporting end-user needs by the provision knowledge about cultural heritage protection. In conclusion, SCIENCE project is composed by a bilateral consortium of the Greek delegation of Harokopio University of Athens, National Technical University of Athens, Terra Spatium S.A, Ephorate of Antiquities of Heraklion (Crete), Acropolis Restoration Service (Athens) of Ministry of Culture and Sports and by the Chinese delegation of Science Academy of China (Institute of Remote Sensing and Digital Earth) and  International Centre on Space Technologies for Natural and Cultural Heritage (HIST) under the auspices of UNESCO (HIST-UNESCO).</p>

2016 ◽  
Vol 47 (3) ◽  
pp. 1448
Author(s):  
D. D. Alexakis ◽  
A. Agapiou ◽  
K. Themistocleous ◽  
V. Lysandrou ◽  
A. Sarris ◽  
...  

The study focuses on the creation of an innovative methodology for the development of a risk assessment model for the archaeological sites of western Cyprus (Paphos district). On site observation is the most common way for monitoring cultural heritage sites and monuments in Cyprus. However, this procedure which includes data collection,  periodical  observations,  and  multivariate  risk  assessment  analysis,  is practically difficult to be accomplished with the traditional practices and methods since it is time consuming and cost insufficient. Thus, the use of modern technologies such as Remote Sensing and GIS is anticipated to provide a tool of directives for the protection and preservation of cultural heritage sites from anthropogenic and environmental threats. These technologies provide  to scientists integrated monitoring capabilities and have the unique advantage to store and manipulate a large amount of spatial and attribute data simultaneously. This study aims to integrate both satellite remote sensing techniques and GIS in a multidisciplinary approach, for monitoring natural and anthropogenic hazards with the use of archived and up-to-dated multi-temporal remotely sensed images in the study area, namely in areas nearby cultural heritage sites and monuments in Paphos area (Cyprus).According to the results, extensive construction and building development has taken placein the broader area. It was also proved that vast number of sites is established on areas prone to erosion and landslide phenomena.


2020 ◽  
Vol 12 (12) ◽  
pp. 2003 ◽  
Author(s):  
Iulia Dana Negula ◽  
Cristian Moise ◽  
Andi Mihai Lazăr ◽  
Nicolae Cătălin Rișcuța ◽  
Cătălin Cristescu ◽  
...  

The capabilities of satellite remote sensing technologies and their derived data for the analysis of archaeological sites have been demonstrated in a large variety of studies over the last decades. Likewise, the Earth Observation (EO) data contribute to the disaster management process through the provision of updated information for areas under investigation. In addition, long term studies may be performed for the in–depth analysis of the disaster–prone areas using archive satellite imagery and other cartographic materials. Hence, satellite remote sensing represents an essential tool for the study of hazards in cultural heritage sites and landscapes. Depending on the size of the archaeological sites and considering the fact that some parts of the site might be covered, the main concern regards the suitability of satellite data in terms of spatial and spectral resolution. Using a multi–temporal Sentinel–2 dataset between 2016 and 2019, the present study focuses on the hazard risk identification for the Micia and Germisara archaeological sites in Romania as they are endangered by industrialisation and major infrastructure works and soil erosion, respectively. Furthermore, the study includes a performance assessment of remote sensing vegetation indices for the detection of buried structures. The results clearly indicate that Sentinel–2 imagery proved to be fundamental in meeting the objectives of the study, particularly due to the extensive archaeological knowledge that was available for the cultural heritage sites. The main conclusion to be drawn is that satellite–derived products may be enhanced by integrating valuable archaeological context, especially when the resolution of satellite data is not ideally fitting the peculiarities (e.g., in terms of size, underground structures, type of coverage) of the investigated cultural heritage sites.


2021 ◽  
Vol 13 (13) ◽  
pp. 7166
Author(s):  
Yukun Zhang ◽  
Songyang Li ◽  
Lifeng Tan ◽  
Jiayin Zhou

The Great Wall of China is more than a wall: it is an extensive cultural route. Pass cities, which are usually large defensive fortresses overseeing an entire fortified area, are an essential part of this heritage and are at the core of the Great Wall’s defense system. Juyong Pass was the closest Pass city to Beijing during the Ming Dynasty when the Great Wall reached its peak. It consisted of five regions—south, east, north, west, and central—that form three fortification levels: core castle, Bao city, and End facility. Based on the Juyong defense area military settlements database, this paper applied spatial analysis methods and found that more than half of the military’s resources for the whole defense area were focused on the western part of the wall, which formed another military core alongside Juyong Pass city. However, the current conservation strategy only focuses on Juyong Pass itself, neglecting the settlements in the western part, thereby destroying the integrity of the Great Wall’s heritage. By clarifying the distribution of cultural heritage in this area, we hope to encourage the preservation of many fortifications according to their authentic historical sphere of control and provide a reference for the sustainable integration of resources along the significant cultural routes of the Great Wall.


2021 ◽  
Author(s):  
Federico Di Traglia ◽  
Claudio De Luca ◽  
Alessandro Fornaciai ◽  
Mariarosaria Manzo ◽  
Teresa Nolesini ◽  
...  

<p>Steep-slope volcanoes are geomorphological systems receptive to both exogenous and endogenous phenomena. Volcanic activity produces debris and lava accumulation, whereas magmatic/tectonic and gravitational processes can have a destructive effect, triggering mass-wasting and erosion.</p><p>Optical and radar sensors have often been used to identify areas impacted by eruptive and post-eruptive phenomena, quantify of topographic changes, and/or map ground deformation related to magmatic-tectonic-gravitational processes.</p><p>In this work, the slope processes on high-gradient volcano flanks in response to shift in volcanic activity have been identified by means of remote sensing techniques. The Sciara del Fuoco unstable flank of Stromboli volcano (Italy) was studied, having a very large set (2010-2020) of different remote sensing data available.</p><p>Data includes LiDAR and tri-stereo PLEIADES-1 DEMs, high-spatial-resolution (HSR) optical imagery (QUICKBIRD and PLEIADES-1), and space-borne and ground-based Synthetic Aperture Radar (SAR) data. Multi-temporal DEMs and HSR optical imagery permits to map areas affected by major lithological and morphological changes, and the volumes of deposited/eroded material. The results lead to the identification of topographical variations and geomorphological processes that occurred in response to the variation in eruptive intensity. The joint exploitation of space-borne and ground-based Differential and Multi Temporal SAR Interferometry (InSAR and MT-InSAR) measurements revealed deformation phenomena affecting the volcano edifice, and in particular the Sciara del Fuoco flank.</p><p>The presented results demonstrate the effectiveness of the joint exploitation of multi-temporal DEMs, HSR optical imagery, and InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the slope phenomena in volcanic areas.</p><p>This work was financially supported by the “Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile” (Presidency of the Council of Ministers – Department of Civil Protection); this publication, however, does not reflect the position and official policies of the Department".</p>


2021 ◽  
Author(s):  
Hang Xu ◽  
Fulong Chen ◽  
Wei Zhou

Abstract The Great Wall of China is one of the largest architectural heritage sites globally, and its sustainability is a significant concern. However, its large extent and diverse characteristics cause challenges for deformation monitoring. In this study, the Shanhaiguan section of the Great Wall was investigated in a case study to ascertain the damage and potential hazards of the architectural site. Two standard multi-temporal synthetic aperture radar interferometry (MTInSAR) technologies, including persistent scatterer SAR interferometry (PSInSAR) and small baseline subset (SBAS) SAR interferometry, were used for deformation monitoring using high-resolution TerraSAR-X data acquired in 2015–2017. The results of the two MTInSAR approaches revealed the health condition of the Great Wall. The Shanhaiguan section was stable, but local instabilities caused by rock falls were detected in some mountainous areas. In addition, the applicability of PSInSAR and SBAS was evaluated. The performance analysis of the two approaches indicated that a more reliable and adaptable MTInSAR technique needs to be developed for monitoring the Great Wall. This study demonstrates the potential of MTInSAR technology with high-resolution data for the health diagnosis of heritage sites with a linear structure, such as the Great Wall.


2018 ◽  
Vol 39 (6) ◽  
pp. 1347-1377 ◽  
Author(s):  
Abdelaziz Elfadaly ◽  
Wael Attia ◽  
Mohamad Molaei Qelichi ◽  
Beniamino Murgante ◽  
Rosa Lasaponara

Author(s):  
C. Moise ◽  
A.-M. Lazar ◽  
C. E. Mihalache ◽  
L. A. Dedulescu ◽  
I. F. Dana Negula ◽  
...  

Abstract. Cultural heritage represents the link between past and present civilizations, contributing to the right appreciation of the present-day by understanding the historical evolution of different human communities that are shaping our world. Preservation of the cultural heritage and mitigating potential risks on invaluable artifacts or objectives is key to conserving the identity of present and future generations. Our complex project is dedicated to monitoring, conservation, protection and promotion of the Romanian cultural heritage. It addresses the challenge of better safeguarding the cultural heritage by developing a multidisciplinary approach.The combined use of Synthetic Aperture Radar and multispectral satellite imagery represent a non-invasive investigation instrument that enable multitemporal analysis, contributing with valuable insights regarding cultural heritage sites. Remote sensing techniques were used to generate geospatial products such as displacement maps, urban sprawl evolution maps, urban heat island maps and many more.For protecting important artifacts, innovative recipes based on nanotechnologies were developed. In order to promote these artifacts, 3D photorealistic models were created using 3D reconstruction technology. For selected cultural heritage objectives, an integrated LiDAR aerial mapping system has enabled the creation of a high accuracy 3D model.This paper illustrates how different technologies, ranging from remote sensing to nanotechnology, could be used for safeguarding and promoting the Romanian cultural heritage and represents a first step in establishing and consolidating a multidisciplinary team involved in this domain.


2017 ◽  
Vol 43 (3) ◽  
pp. 1301
Author(s):  
I. Parcharidis ◽  
M. Foumelis ◽  
P. Kourkouli

Space borne differential synthetic aperture radar interferometry (DInSAR) has already proven its potential for mapping ground deformation phenomena, e.g. earthquakes, volcano dynamics, etc covering in continuity large areas. The innovative Persistent Scatterers Interferometry (PSI) technique, which overcomes several limitations of conventional SAR differential interferometry especially for applications in landslide studies, is suitable for monitoring slope deformations with millimetric precision. With PSI technique we detect the deformation, for long periods, that occur in an area as average annual deformation (mm/y) and is not spatially continuous but in terms of points (point targets). The aim of this study is to present preliminary results on the monitoring of slope instability in Panachaiko Mountain and particularly of the slopes facing the city of Patras. For this purpose we processed and analysed 42 ERS 1 and ERS 2 SAR scenes acquired in the time span 1992 and 2001, by applying the Interferometric Point Target Analysis algorithm. Point target reflectors with stable radar response over time were selected. In this case most of the point targets correspond to buildings of the local settlements or to rock outcrops. Additionally, millimetric target displacements along the line of sight direction were detected allowing measurements of slow terrain motion.


Author(s):  
A. M. Ilyushin ◽  
◽  
S. S. Onishchenko ◽  
P. G. Sokolov ◽  
◽  
...  

The results of search studies of previously discovered archaeological sites in the Kemerovo region are presented. The factors of “loss” of cultural heritage objects are described. Examples are given and the results of the search for specific funeral monuments in the basin of the river Inya on the territory of the Kuznetsk basin. Information on archaeological heritage sites is being clarified. New information on archaeological sites studied is introduced into wide scientific circulation.


Sign in / Sign up

Export Citation Format

Share Document