Varying Snow and Vegetation Signatures of Surface Albedo Feedback on the Northern Hemisphere Land Warming

Author(s):  
Andrea Alessandri ◽  
Franco Catalano ◽  
Matteo De Felice ◽  
Bart van den Hurk ◽  
Gianpaolo Balsamo

<div> <p>Changes in snow and vegetation cover associated with global warming can modify surface albedo (the reflected amount of radiative energy from the sun), therefore modulating the rise of surface temperature that is primarily caused by anthropogenic greenhouse-gases emission. This introduces a series of potential feedbacks <span>to</span> regional warming with positive<span> (negative)</span> feedback<span>s</span> enhancing<span> (reducing)</span> temperature increase by augmenting<span> (decreasing) the absorption of </span>short-wave radiation. So far our knowledge on the importance and magnitude of these feedbacks has been hampered by the limited availability of relatively long records of continuous satellite observations.</p> </div><div> <p>Here we exploit a 3<span>1</span>-year (1982-2012) high-frequency observational record of land data to quantify the strength of the surface-albedo feedback on land warming <span>modulated by snow and vegetation </span>during the recent historical period. To distinguish snow and vegetation contributions to this feedback, we examine temporal composites of satellite data in three different Northern Hemisphere domains. The analysis reveals and quantifies markedly different signatures of <span>the </span>surface-albedo feedback. A large positive surface-albedo feedback of<span> +0</span>.87 [CI 95%: 0.68, 1.05] W/(m<sup>2</sup>∗K) <span>absorb</span>ed solar radiation per degree of temperature increase is estimated in the domain where snow dominates. On the other hand the surface-albedo feedback becomes predominantly negative where vegetation dominates: it is largely negative (<span>-</span>0.91 [<span>-</span>0.81, <span>-</span>1.03] W/(m<sup>2</sup>∗K)) in the domain with vegetation dominating, while it is moderately negative (<span>-</span>0.57 [<span>-</span>0.40, <span>-</span>0.72] W/(m<sup>2</sup>∗K)) where both vegetation and snow are significantly present.  <span>S</span>now cover reduction consistently provides a positive feedback on warming<span>. In contrast,</span> vegetation<span> expansion</span> can produce <span>either</span> positive <span>or</span> negative feedbacks<span> in different regions and seasons, depending on whether the underlying surface being replaced has higher (e.g. snow) or lower (e.g. dark soils) albedo than vegetation.</span></p> <p><span>The observational data and analysis from this work is </span><span>supplying</span> fundamental knowledge to model and predict how <span>the </span>surface-albedo feedback will evolve and affect the rate of regional temperature rise in the future<span>. </span><span>So far the simulation and prediction of albedo feedbacks shows a large spread and divergence among the available state-of-the-art Earth System Models (ESMs), due to uncertainties in the representation of vegetation-snow processes and the dynamics of vegetation and to uncertainties in land-cover parameters. </span><span>By exploiting the</span><span> unprecedented observational benchmarks to evaluate the ESMs currently engaged in CMIP6, this work will allow an improved and better constrained representation of the processes underlying surface albedo feedbacks in the next generation of ESMs.</span> </p> </div><div> <p><span>This work is in now in Press and Open Access on Environmental Research Letters:</span> https://doi.org/10.1088/1748-9326/abd65f</p> </div>

2006 ◽  
Vol 19 (11) ◽  
pp. 2617-2630 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.


2015 ◽  
Vol 28 (3) ◽  
pp. 1248-1259 ◽  
Author(s):  
Yunfeng Cao ◽  
Shunlin Liang ◽  
Xiaona Chen ◽  
Tao He

Abstract The decreasing surface albedo caused by continuously retreating sea ice over Arctic plays a critical role in Arctic warming amplification. However, the quantification of the change in radiative forcing at top of atmosphere (TOA) introduced by the decreasing sea ice albedo and its feedback to the climate remain uncertain. In this study, based on the satellite-retrieved long-term surface albedo product CLARA-A1 (Cloud, Albedo, and Radiation dataset, AVHRR-based, version 1) and the radiative kernel method, an estimated 0.20 ± 0.05 W m−2 sea ice radiative forcing (SIRF) has decreased in the Northern Hemisphere (NH) owing to the loss of sea ice from 1982 to 2009, yielding a sea ice albedo feedback (SIAF) of 0.25 W m−2 K−1 for the NH and 0.19 W m−2 K−1 for the entire globe. These results are lower than the estimate from another method directly using the Clouds and the Earth’s Radiant Energy System (CERES) broadband planetary albedo. Further data analysis indicates that kernel method is likely to underestimate the change in all-sky SIRF because all-sky radiative kernels mask too much of the effect of sea ice albedo on the variation of cloudy albedo. By applying an adjustment with CERES-based estimate, the change in all-sky SIRF over the NH was corrected to 0.33 ± 0.09 W m−2, corresponding to a SIAF of 0.43 W m−2 K−1 for NH and 0.31 W m−2 K−1 for the entire globe. It is also determined that relative to satellite surface albedo product, two popular reanalysis products, ERA-Interim and MERRA, severely underestimate the changes in NH SIRF in melt season (May–August) from 1982 to 2009 and the sea ice albedo feedback to warming climate.


Author(s):  
Andrea Alessandri ◽  
Franco Catalano ◽  
Matteo De Felice ◽  
Bart van den Hurk ◽  
Gianpaolo Balsamo

2015 ◽  
Vol 9 (5) ◽  
pp. 1879-1893 ◽  
Author(s):  
K. Atlaskina ◽  
F. Berninger ◽  
G. de Leeuw

Abstract. Thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) surface albedo data for the Northern Hemisphere during the spring months (March–May) were analyzed to determine temporal and spatial changes over snow-covered land surfaces. Tendencies in land surface albedo change north of 50° N were analyzed using data on snow cover fraction, air temperature, vegetation index and precipitation. To this end, the study domain was divided into six smaller areas, based on their geographical position and climate similarity. Strong differences were observed between these areas. As expected, snow cover fraction (SCF) has a strong influence on the albedo in the study area and can explain 56 % of variation of albedo in March, 76 % in April and 92 % in May. Therefore the effects of other parameters were investigated only for areas with 100 % SCF. The second largest driver for snow-covered land surface albedo changes is the air temperature when it exceeds a value between −15 and −10 °C, depending on the region. At monthly mean air temperatures below this value no albedo changes are observed. The Enhanced Vegetation Index (EVI) and precipitation amount and frequency were independently examined as possible candidates to explain observed changes in albedo for areas with 100 % SCF. Amount and frequency of precipitation were identified to influence the albedo over some areas in Eurasia and North America, but no clear effects were observed in other areas. EVI is positively correlated with albedo in Chukotka Peninsula and negatively in eastern Siberia. For other regions the spatial variability of the correlation fields is too high to reach any conclusions.


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 901-910 ◽  
Author(s):  
H Kitagawa ◽  
Hitoshi Mukai ◽  
Yukihiro Nojiri ◽  
Yasuyuki Shibata ◽  
Toshiyuki Kobayashi ◽  
...  

Air sample collections over the western Pacific have continued since 1992 as a part of Center for Global Environmental Research, National Institute for Environmental Studies (CGER-NIES) global environmental monitoring program. The air samples collected on the Japan-Australia transect made it possible to trace the seasonal and secular 14CO2 variations, as well as an increasing trend of greenhouse gases over the western Pacific. A subset of CO2 samples from latitudes of 10–15°N and 23–28°S were chosen for accelerator mass spectrometry (AMS) 14C analysis using a NIES-TERRA AMS with a 0.3–0.4% precision. These 14CO2 records in maritime air show seasonal variations superimposed on normal exponential decreasing trends with a time constant of about 16 yr. The Δ14C values in the Northern Hemisphere are lower those in the Southern Hemisphere by 3–4 during 1994–2002. The Northern Hemisphere record shows relatively high seasonality (2.3 ± 1.5) as compared with the Southern Hemisphere (1.3 ± 1.2). The maximum values of seasonal cycles appear in late autumn and early winter in the Northern and Southern Hemispheres, respectively. Oscillations of 1–10 yr over the western Pacific are found to correlate possibly with the El Niño/Southern Oscillation (ENSO) events.


2021 ◽  
Author(s):  
Alexander Makshtas ◽  
Petr Bogorodski ◽  
Ilya Jozhikov

<p>Investigations of active soil layer on the Research station “Ice Base Cape Baranova’’ had been started in February 2016 after installation on the meteorological site sensors of Finnish Meteorological Institute: thermochain with IKES PT00 temperature sensors at depths of 20, 40, 60, 80 and 100 cm, soil heat flux sensor HFP, and two ThetaProbe type ML3 soil moisture sensors. Based on the results of measurements annual cycle of soil temperature changes was revealed with amplitudes 10 - 15 ° C less than the amplitudes of surface air layer temperature (Ta) and especially the temperature of the soil upper surface (Tsrad), in great degree determined by short-wave radiation heating and long-wave radiation cooling. Approximation by linear fittings shows average rates of increase Ta - 0.4°C/year, Тsrad - 0.3°C/year, and temperatures of active soil layer - 0.2°C/year.</p><p>The data on thermal regime of active soil layer and characteristics of energy exchange in atmospheric surface layer make it possible to draw the conclusion about the reason for the abnormally warm state of the upper meter soil layer in summer 2020, despite in March during the whole period under study active soil layer was the warmest in 2017. Comparison in temperatures of the underlying surface and characteristics of surface heat balance during period under study showed that in 2020 the temperature of the soil surface at the end of May for a short time reached the temperature of snow melting. It is happened 25 days earlier than in 2017 as well as other years and led to radical decrease in surface albedo, sharp increase of heat flux to the underlying surface, and increased duration of active soil layer heating.</p><p>Additionally, permafrost thawing studies using a manual contact method were carried out on the special site, organized according to CALM standards. These studies showed significant variety of soil active layer thicknesses in the relatively small area (~0.12 km<sup>2</sup>), which indicates significant spatial variability of microrelief, structure and thermophysical properties of soil, as well as vegetation, typical for Arctic desert. Calculations carried out with version of the well-known thermodynamic Leibenzon model for various parameterizations of vegetation and soil properties partly described peculiarities of spatial variability of observed thawing depths.</p>


2021 ◽  
Author(s):  
Agathe Toumoulin ◽  
Yannick Donnadieu ◽  
Delphine Tardif ◽  
Jean-Baptiste Ladant ◽  
Alexis Licht ◽  
...  

<p>At the junction of warmhouse and coolhouse climate phases, the Eocene Oligocene Transition (EOT) is a key moment in the history of the Cenozoic climate. Yet, while it is accompanied by severe extinctions and biodiversity turnovers, terrestrial climate evolution remains poorly resolved. On lands, some fossil and geochemistry records suggest a particularly marked cooling in winter, which would have led to the development of more pronounced seasons (higher Mean Annual Range of Temperatures, MATR) in certain regions of the Northern Hemisphere. This type of climate change should have had consequences on biodiversity and an implication in some of the fauna and flora renewals described at the EOT. However, this season strengthening has been studied only superficially by model studies, and questions remain about the geographical extent of this phenomenon and the associated climatic processes. Although other components of the climate system vary seasonally (e.g., precipitation, wind), we therefore focus on the seasonality of temperatures only.</p><p>In order to better understand and describe temperature seasonality change patterns from the middle Eocene to the early Oligocene, we use the Earth System Model IPSL-CM5A2 and a set of simulations reconstructing the EOT through three major climate forcings: pCO2 decrease (1120/840 to 560 ppm), the Antarctic ice-sheet (AIS) formation, and the associated sea-level decrease (-70 m). </p><p>Our results suggest that seasonality changes across the EOT rely on the combined effects of the different tested mechanisms which result in zonal to regional climate responses. Sea-level changes associated with the earliest stage of the AIS formation may have also contributed to middle to late Eocene MATR reinforcement. We reconstruct strong and heterogeneous patterns of seasonality changes across the EOT. Broad continental areas of increased MATR reflect a strengthening of seasonality (from 4°C to > 10°C increase of the MATR) in agreement with MATR and Coldest Month Mean Temperatures (CMMT) changes indicated by a review of existing proxies. pCO2 decrease induces a zonal pattern with alternating increasing and decreasing seasonality bands. In the northern high-latitudes, it results in sea-ice and surface albedo feedback, driving a strong increase in seasonality (up to 8°C MATR increase). Conversely, the onset of the AIS is responsible for a more constant surface albedo, which leads to a strong decrease in seasonality in the southern mid- to high-latitudes (> 40°S). Finally, continental areas emerged due to the sea level lowering cause the largest increase in seasonality and explain most of the global heterogeneity in MATR changes patterns. The seasonality change patterns we reconstruct are consistent with the variability of the EOT biotic crisis intensity across the Northern Hemisphere.</p>


2019 ◽  
Vol 32 (19) ◽  
pp. 6219-6236 ◽  
Author(s):  
Yun Hang ◽  
Tristan S. L’Ecuyer ◽  
David S. Henderson ◽  
Alexander V. Matus ◽  
Zhien Wang

Abstract The role of clouds in modulating vertically integrated atmospheric heating is investigated using CloudSat’s multisensor radiative flux dataset. On the global mean, clouds are found to induce a net atmospheric heating of 0.07 ± 0.08 K day−1 that derives largely from 0.06 ± 0.07 K day−1 of enhanced shortwave absorption and a small, 0.01 ± 0.04 K day−1 reduction of longwave cooling. However, this small global average longwave effect results from the near cancellation of much larger regional warming by multilayered cloud systems in the tropics and cooling from stratocumulus clouds in subtropical oceans. Clouds are observed to warm the tropical atmosphere by 0.23 K day−1 and cool the polar atmosphere by −0.13 K day−1 enhancing required zonal heat redistribution by the meridional overturning circulation. Zonal asymmetries in the occurrence of multilayered clouds that are more frequent in the Northern Hemisphere and stratocumulus that occur more frequently over the southern oceans also leads to 3 times as much cloud heating in the Northern Hemisphere (0.1 K day−1) than the Southern Hemisphere (0.04 K day−1). These findings suggest that clouds very likely make the strongest contribution to the annual mean atmospheric energy imbalance between the hemispheres (2.0 ± 3.5 PW).


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 682 ◽  
Author(s):  
Michael Warscher ◽  
Sven Wagner ◽  
Thomas Marke ◽  
Patrick Laux ◽  
Gerhard Smiatek ◽  
...  

Mountain regions with complex orography are a particular challenge for regional climate simulations. High spatial resolution is required to account for the high spatial variability in meteorological conditions. This study presents a very high-resolution regional climate simulation (5 km) using the Weather Research and Forecasting Model (WRF) for the central part of Europe including the Alps. Global boundaries are dynamically downscaled for the historical period 1980–2009 (ERA-Interim and MPI-ESM), and for the near future period 2020–2049 (MPI-ESM, scenario RCP4.5). Model results are compared to gridded observation datasets and to data from a dense meteorological station network in the Berchtesgaden Alps (Germany). Averaged for the Alps, the mean bias in temperature is about −0.3 °C, whereas precipitation is overestimated by +14% to +19%. R 2 values for hourly, daily and monthly temperature range between 0.71 and 0.99. Temporal precipitation dynamics are well reproduced at daily and monthly scales (R 2 between 0.36 and 0.85), but are not well captured at hourly scale. The spatial patterns, seasonal distributions, and elevation-dependencies of the climate change signals are investigated. Mean warming in Central Europe exhibits a temperature increase between 0.44 °C and 1.59 °C and is strongest in winter and spring. An elevation-dependent warming is found for different specific regions and seasons, but is absent in others. Annual precipitation changes between −4% and +25% in Central Europe. The change signals for humidity, wind speed, and incoming short-wave radiation are small, but they show distinct spatial and elevation-dependent patterns. On large-scale spatial and temporal averages, the presented 5 km RCM setup has in general similar biases as EURO-CORDEX simulations, but it shows very good model performance at the regional and local scale for daily meteorology, and, apart from wind-speed and precipitation, even for hourly values.


Sign in / Sign up

Export Citation Format

Share Document