Late Pleistocene paleo-hydrological reconstruction based on a new lake-level curve of the Dead Sea

Author(s):  
Jürgen Mey ◽  
Juluis Jara ◽  
Manfred R. Strecker

<p><span><span>The Dead Sea depression features exceptionally well preserved lacustrine sedimentary sequences and fossil lake-level markers that attest to a much more extensive lake with a maximum highstand water level of more than 200 m above the modern Dead Sea. Lake-level reconstructions based on sedimentary sequences places this highstand phase within the interval of 15-29 ka. Regional paleoclimatic records, however, indicate arid conditions during this time. This apparent contradiction has been explained by spatially heterogeneous moisture delivery resulting from a southward shift of the Westerly wind system and a change in the path and intensity of winter storms. A newly established lake level-chronology based on </span><sup><span>14</span></sup><span>C- and U/Th-dating of fossil stromatolites has provided contrasting results with respect to previous investigations. Accordingly, the paleolake-highstand was of much shorter duration and occurred at least 10 ka earlier than previously suggested</span><span>. The new lake-level curve agrees with evidence of arid glacial and humid interglacial periods in the Levant.  </span><span>In this study we compared these different lake-level reconstructions quantitatively, using a distributed hydrological balance model. This model computes evaporation based on an aerodynamic- /mass-transfer approach. Calibration and validation of this model is achieved by using ~30 years of pre-anthropogenic lake-level observations combined with interpolated climate surfaces based on weather-station records. In the paleo-hydrological reconstruction we account for parameter uncertainties using Monte-Carlo simulations. Our preliminary results show a pronounced sensitivity of the lake-level to precipitation, wind speed, and surface roughness.</span></span></p>

2020 ◽  
Author(s):  
Julius Jara-Muñoz ◽  
Amotz Agnon ◽  
Jens Fohlmeister ◽  
Jürgen Mey ◽  
Norbert Frank ◽  
...  

<p><span>High-resolution records of lake-level changes are crucial to elucidate the impact of local and global climatic changes in lacustrine basins. The Late Quaternary evolution of the Dead Sea has been characterized by substantial variability apparently linked with global climatic changes, beign subject of many research efforts since decades. Previous studies have defined two main lake phases, the Lake Lisan and the Dead Sea, the earlier was a highstand period that lasted between ~70 and ~15 ka, the  latter was the lowstand period that persisted until the present. Here we focus on the switch between Lake Lisan and Dead Sea studying fossil lake shorelines, a sequence that comprises dozens of levels exposed along the rims of the Dead Sea, containing abundant fossil stromatolites that we dated by mean of radiocarbon and U-decay series. We determined 90 radiocarbon and 35 U-Th ages from stromatolites from almost every shoreline level. We compared U-Th and radiocarbon ages to estimating a radiocarbon reservoir between 0.2 and 0.8 ka, used to correct the remaining radiocarbon ages before calibration. The resulting ages range between ~45  and ~20 ka. Dating was </span><span>complemented with analysis of stable oxygen and carbon isotopes. Furthermore, we applied a distributed hydrological balance model to constrain past precipitation and temperature conditions. Our results suggest that the duration of the last Lake Lisan highstand was shorter than previously estimated. Taking this at face value, the switch between Lake Lisan and Dead Sea occurred at ~28 ka, ~10 ka earlier than previously suggested. Oxygen and carbon isotopes show a consistent pattern, displaying a switch between wet and dry conditions at ~28 ka. Preliminary results from the hydrological model indicate a much stronger sensitivity of the lake level to precipitation amounts than to air temperature. From our results we can’t observe a clear link between global temperature variations and lake-level changes in the Lisan/Dead Sea lakes. Similar non-linear response to northern hemisphere climatic changes have been also documented in Holocene Dead Sea paleoclimatic records, suggesting that global climatic variations may led to variable lake-level responses. The results of this study adds further complexity to the understanding of factors controlling climate variability in the Dead Sea. </span></p>


2009 ◽  
Vol 72 (1) ◽  
pp. 1-15 ◽  
Author(s):  
N. Waldmann ◽  
M. Stein ◽  
D. Ariztegui ◽  
A. Starinsky

AbstractIn this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.


2019 ◽  
Author(s):  
Samiro Khodayar ◽  
Johannes Hoerner

Abstract. The Dead Sea desertification-threatened region is affected by continual lake level decline and occasional, but life-endangering flash-floods. Climate change has aggravated such issues in the past decades. In this study, the impact of the Dead Sea drying on the severe convection generating heavy precipitation in the region is investigated. Perturbation simulations with the high-resolution convection-permitting regional climate model COSMO-CLM and several numerical weather prediction (NWP) runs on an event time scale are performed over the Dead Sea area. A reference simulation covering the 2003 to 2013 period and a twin sensitivity experiment, in which the Dead Sea is dried out and set to bare soil, are compared. NWP simulations focus on heavy precipitation events exhibiting relevant differences between the reference and the sensitivity decadal realization to assess the impact on the underlying convection-related processes. On a decadal scale, the difference between the simulations points out that in future regional climate, under ongoing lake level decline, a decrease in evaporation, higher air temperatures and less precipitation is to expect. Particularly, an increase in the number of dry days and in the intensity of heavy precipitation is foreseen. The drying of the Dead Sea is seen to affect the atmospheric conditions leading to convection in two ways: (a) the local decrease in evaporation reduces moisture availability in the lower boundary layer locally and in the neighbouring, directly affecting atmospheric stability. Weaker updrafts characterize the drier and more stable atmosphere of the simulations where the Dead Sea has been dried out. (b) Thermally driven wind system circulations and resulting divergence/convergence fields are altered preventing in many occasions convection initiation because of the omission of convergence lines.


2020 ◽  
Author(s):  
Cecile Blanchet ◽  
Hana Jurikova ◽  
Julia Fusco ◽  
Rik Tjallingii ◽  
Markus Schwab ◽  
...  

<p>Sedimentary records from the Dead Sea constitute unique paleoclimatic archives that enable investigating the response of environments to climatic changes. Large lake-level fluctuations (>100 m) occurred during the past glacial-interglacial cycles due to reorganizations of the hydroclimatic regime and drastically modified the morphology of the drainage area. We aim here to reconstruct past sedimentary dynamics at times of varying lake level to gain insights into paleoclimate and landscape evolution.</p><p>For this study, we have compared present-day surface sediments (fluvial and soil sediments) retrieved on both the eastern Jordanian and western shores of the present Dead Sea with downcore sediment archives including the ICDP Dead Sea Deep Drilling Program Site 5017-1. Streams originating from various parts of the watershed can be distinguished by their grain-size distribution, with northern and south-western streams having generally finer grain-size modes when compared with streams from the eastern side. We find that all modes identified in the fluvial sediments were present in the ICDP downcore samples from the last deglaciation, when lake levels were up to 250m higher than today. This suggests that the whole watershed contributed to the sediment input at that time. In contrast, Holocene sediments from the deep core and shore deposits are enriched in fluvial particles showing similar grain-size modes as the northern and south-western streams. This suggests that these regions were prime sediment sources during lower lake-level stands. An additional mode, tentatively related to aeolian particles, was also identified in the Holocene samples, pointing to the remobilization of deposited dust in the watershed or to a more arid regional climate.</p><p>Our results provide a first synoptic view on sedimentary dynamics in the Dead Sea watershed and help to relate sediment provenance to the drainage morphology and paleo-hydrological regimes. They constitute a solid basis for further assessment of sedimentary provenance using geochemical indicators.</p>


2020 ◽  
Author(s):  
Markus J. Schwab ◽  
Daniela Müller ◽  
Ina Neugebauer ◽  
Rik Tjallingii ◽  
Yoav Ben Dor ◽  
...  

<p>The drainage basin of the Dead Sea is the largest hydrological system in the Levant and spans across the boundary between the sub-humid to semi-arid Mediterranean and the arid to hyper-arid Saharo-Arabian climate zones. As a terminal lake, precipitation changes due to climatic variations result in extensive fluctuations of lake level and sediment deposition.</p><p>A unique sediment record from the deepest part of the Dead Sea Basin was obtained as part of the ICDP Dead Sea Deep Drilling Project. Here we analyze the partially annually laminated sediments of Core 5017-1-A between 88.5-99.2 m core depth, which comprise the period between ~16.5 and ~11 ka and document a lake level drop of ca 160 m. In the sediments of Core 5017-1-A, this marks the transition from MIS2 aad (alternating aragonite and detritus) sediments to MIS1 halite deposits and ld (laminated detrital marl) sediments, coinciding with increased drying in the Dead Sea watershed.</p><p>Microfacies analyses show the occurrence of several lithological facies that accumulated during MIS2: aad, gd (massive gypsum deposit within marl), native sulfur concretions (associated with greenish colored aad), mtd (mass-transport deposits, typically graded) and homogenites consisting of clay and silt. Further, flood layers have been identified, potentially indicating rainstorms associated with specific eastern Mediterranean synoptic systems. To complement the microfacies analyses, XRF scanning provides continuous Ti/Ca and S/Ca records to reconstruct relative detrital input and gypsum occurrence, respectively. Additionally, to study potential early signs of hydroclimatic change, the deep lake sediments are correlated to the Lisan Formation of the marginal Masada outcrop using distinct gypsum marker layers, indicative of pronounced lake level drops. However, due to a significant lake level decline, the Masada outcrop sediments terminate at around 14.5 ka and the subsequent lake level lowering is solely recorded in the deep lake sediments.</p><p>This study was funded by the German Science Foundation (DFG Grant BR 2208/13-1/-2). Further, it is a contribution to the Helmholtz Association (HFG) climate initiative REKLIM Topic 8 “Abrupt climate change derived from proxy data”.</p>


2020 ◽  
Author(s):  
Nicolas Waldmann ◽  
Yin Lu ◽  
Revital Bookman ◽  
Shmulik Marco

<p>Recording and analyzing how climate change impacts flood recurrence, basin erosion, and sedimentation can improve our understanding of these systems. The aragonite-detritus laminae couplets comprising the lacustrine formations that were deposited in the Dead Sea Basin are considered as faithful monitors of the freshwater supply to the lakes. We count a total of ~5600 laminae couplets deposited in the last 45 kyr (MIS3-MIS1) at the Dead Sea depocenter, which encompass the upper 141.6 m of the ICDP Core 5017-1. The present study shows that aragonite and detritus laminae are thinner and occur at high frequency during MIS 3-2, while they are much thicker and less frequent during MIS 1. By analyzing multiple climate-connected factors, we propose that significant lake-level drops, enhanced dust input, and low vegetative cover in the drainage basin during the last deglaciation (22-11.6 ka) have considerably increased erodible materials in the Dead Sea watershed. We find a decoupling existed between the significant lake-level drop/lake size reduction and lamina thickness change during the last deglaciation. We argue that during the last glacial and the Holocene, the variation of lamina thickness at the multiple-millennium scale was not controlled directly by the lake-level/size change. We interpret this decoupling implying the transport capacity of flash-floods is low and might be saturated by the oversupply of erodible materials, and indicating a transport-limited regime during the time period. We suggest that the observed thickness and frequency distribution of aragonite-detritus laminae points to the high frequency of small-magnitude floods during the last glacial period, in contrast to low frequency, but large-magnitude floods during the Holocene.</p>


Radiocarbon ◽  
2015 ◽  
Vol 57 (2) ◽  
pp. 237-252 ◽  
Author(s):  
Elisa Joy Kagan ◽  
Dafna Langgut ◽  
Elisabetta Boaretto ◽  
Frank Herald Neumann ◽  
Mordechai Stein

The history of lake-level changes at the Dead Sea during the Holocene was determined mainly by radiocarbon dating of terrestrial organic debris. This article reviews the various studies that have been devoted over the past 2 decades to defining the Dead Sea levels during the Bronze and Iron Ages (≃5.5 to 2.5 ka cal BP) and adds new data and interpretation. In particular, we focus on research efforts devoted to refining the chronology of the sedimentary sequence in the Ze'elim Gully, a key site of paleoclimate investigation in the European Research Council project titled Reconstructing Ancient Israel. The Bronze and Iron Ages are characterized by significant changes in human culture, reflected in archaeological records in which sharp settlement oscillations over relatively short periods of time are evident. During the Early Bronze, Intermediate Bronze, Middle Bronze, and Late Bronze Ages, the Dead Sea saw significant level fluctuations, reaching in the Middle Bronze an elevation of ≃370 m below mean sea level (bmsl), and declining in the Late Bronze to below 414 m bmsl. At the end of the Late Bronze Age and upon the transition to the Iron Age, the lake recovered slightly and rose to ≃408 m bmsl. This recovery reflected the resumption of freshwater activity in the Judean Hills, which was likely accompanied by more favorable hydrological-environmental conditions that seem to have facilitated the wave of Iron Age settlement in the region.


2020 ◽  
Author(s):  
Shahrazad Abu Ghazleh ◽  
Stephan Kempe

<p> </p><p>Calcareous stromatolite crusts overgrowing beach gravels and stabilising piles of rocks were observed on shoreline terraces of Lake Lisan along the eastern coast of the Dead Sea. The stromatolite crusts are thick, massive and hard, with a dark-grey or white-grey finely-laminated structure, indicating that they are mostly calcareous organic build-up of cyanobacterial origin. Samples from these stromatolites have been analyzed using Stable Isotopes (δ13C & δ18O), AAS and XRD analysis. The samples range in altitude between -350 m and -19 m, representing the time interval of Lake Lisan (~ 80-19 ka BP) according to our U/Th dating. Since stromatolites grow in shallow water, they are very sensitive to minor shifts in rainfall and evaporation and therefore an excellent tool to track small changes in hydrology, in climate and in paleoenvironmental conditions of the lake basin.</p><p> </p><p>Oxygen and carbon isotopic compositions of these stromatolites show a linear covariant trend with a strong positive correlation (r = 0.8) and large ranges of 7.85 and 6.78‰, respectively. This trend is most typical of primary carbonates formed in closed lakes. Isotopes analyses show low negative values of stromatolites from the lake highest stands at -76 m to -19 m, reflecting fresh water conditions of the lake basin at the last interglacial-glacial boundary (80-76 ka BP). The lowest values were derived from stromatolites at -103 to -119 m associated with the transgression of the lake to these high stands between 55 and 33 ka BP. The heaviest values were derived from stromatolites at -137 to -160 m indicating a change to dry climatic conditions in the Eastern Mediterranean that caused a subsequent drop of the lake level during MIS 2 (31-19 ka BP).</p><p> </p><p>The Mg/Ca ratio and the XRD analysis of the stromatolites correlate also with transgression-regression phases of the lake. Dominance of calcite in stromatolites at -76 to 0 m and inferred low Mg/Ca ratios of the lake water (i.e. ~2) imply a high fresh water input of the lake during the   highest stands period. A high Mg/Ca ratio of the lake water of >7 inferred from low-level stromatolite at -350 m and the existence of aragonite as the sole mineral reflect low fresh water input and high evaporation rates that caused a lake level regression during H6, ~ 60 ka BP.</p><p> </p><p>Inferred low Mg/Ca ratios of stromatolites at -247 to -101 m and the existence of calcite as a main mineral phase indicate wet climatic conditions of the eastern Mediterranean and lake level transgression to higher than -137 during MIS 3. The appearance of more aragonite in stromatolites at -137 to -154 m and the inferred high Mg/Ca ratio of the lake water points to a return to dry climatic conditions that caused a regression of Lake Lisan between 32 to 22 ka BP (MIS 2). However, the change in the mineral composition to pure calcite at -160 m in addition to the inferred low Mg/Ca ratio correlates well with the transgression of the lake to this level by the end of the LGM.</p><p> </p><p> </p>


2017 ◽  
Vol 464 ◽  
pp. 211-226 ◽  
Author(s):  
Yael Kiro ◽  
Steven L. Goldstein ◽  
Javier Garcia-Veigas ◽  
Elan Levy ◽  
Yochanan Kushnir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document