Achieving Flood Reduction with Natural Water Retention Measures in Agricultural Catchments in Ireland 

Author(s):  
Pia Laue ◽  
Paul Quinn ◽  
Mary Bourke ◽  
Darragh Murphy ◽  
Mark Wilkinson ◽  
...  

<p>In recent decades, land-use and climate change have dramatically altered catchment runoff rates. For example, agriculture intensification has led to increased flood risks by decreasing  soil permeability and reducing channel-floodplain connectivity. Natural Water Retention Measures (NWRM) is an approach that has been adopted European-wide for the attenuation of peak floods and the provision of wider ecosystem services. A reduction in peak flow is achieved by increasing water storage potential in the landscape and by modifying natural flow pathways. In agricultural areas (~70% of Irish land use),  runoff attenuation features such as offline ponds, earthen bunds, sediment traps and leaky dams are frequently deployed natural retention measures.</p><p>Despite the growing evidence across Europe of their efficacy for flood peak reduction, water quality enhancement and biodiversity on the local scale, NWRM features have not been adopted in Ireland as a flood mitigation approach. In order to build a case that will help address this, this presentation will detail a NWRM demonstrate site in Ballygow, Co. Wexford.  The construction and instrumentation of a network of features developed at the field-scale (~1km<sup>2</sup>) is shown. This site is an intensive pasture, small-hold farm. We aim to quantify the effectiveness of these NWRM features to demonstrate their potential to attenuate flood peaks on agricultural areas using temporary storage, whilst minimising the impact on farming.</p><p>The constructed measures consist of a flood swale that connects the channel to the floodplain during high flows, an earthen bund, an offline pond with a sediment trap, that can retain the water from the channel and contributing field slopes, for <12 hours. On-site video footage and eyewitnesses confirm that the flood water flows along the field without draining back into the stream. At approximately 800m across the field, the water is retained temporarily, permitting water storage and the opportunity for suspended sediment to settle out of the water column. Flood water is returned to the channel via a perched 20 cm diameter pipe in the bund. Four automated water level recorders (In-Situ Rugged Troll 100) continuously monitor water levels in the stream and the offline pond at 5 min intervals. In addition, local rainfall (EML Event Logger) is monitored. These data are used to identify the hydrograph characteristics of several storm events and are used to determine the effectiveness of the NWRM structures for flood attenuation. The quantification of the effectiveness of NWRM features will use the observed time series combined with hydraulic and hydrological modelling. </p><p>The quantitative evidence provided by our findings will contribute to establishing vital evidence for the implementation of local and national NWRM schemes in Ireland.</p>

Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Franklin Marín ◽  
Carlos Dahik ◽  
Giovanny Mosquera ◽  
Jan Feyen ◽  
Pedro Cisneros ◽  
...  

Andean ecosystems provide important ecosystem services including streamflow regulation and carbon sequestration, services that are controlled by the water retention properties of the soils. Even though these soils have been historically altered by pine afforestation and grazing, little research has been dedicated to the assessment of such impacts at local or regional scales. To partially fill this knowledge gap, we present an evaluation of the impacts of pine plantations and grazing on the soil hydro-physical properties and soil organic matter (SOM) of high montane forests and páramo in southern Ecuador, at elevations varying between 2705 and 3766 m a.s.l. In total, seven study sites were selected and each one was parceled into undisturbed and altered plots with pine plantation and grazing. Soil properties were characterized at two depths, 0–10 and 10–25 cm, and differences in soil parameters between undisturbed and disturbed plots were analyzed versus factors such as ecosystem type, sampling depth, soil type, elevation, and past/present land management. The main soil properties affected by land use change are the saturated hydraulic conductivity (Ksat), the water retention capacity (pF 0 to 2.52), and SOM. The impacts of pine afforestation are dependent on sampling depth, ecosystem type, plantation characteristics, and previous land use, while the impacts of grazing are primarily dependent on sampling depth and land use management (grazing intensity and tilling activities). The site-specific nature of the found relations suggests that extension of findings in response to changes in land use in montane Andean ecosystems is risky; therefore, future evaluations of the impact of land use change on soil parameters should take into consideration that responses are or can be site specific.


2020 ◽  
Author(s):  
Gregor Johnen ◽  
Klaudija Sapač ◽  
Simon Rusjan ◽  
Vesna Zupanc ◽  
Andrej Vidmar ◽  
...  

<p><strong>Modeling and evaluation of the effect of afforestation on the runoff generation within the Glinščica catchment (Slovenia)</strong></p><p><strong>Gregor Johnen<sup>1</sup>, Klaudija Sapač<sup>2</sup>, Simon Rusjan<sup>2</sup>, Vesna Zupanc<sup>3</sup>, Andrej Vidmar<sup>2</sup>, Nejc Bezak<sup>2</sup></strong></p><p><sup>1 </sup>Radboud University Nijmegen, Faculty of Science</p><p><sup>2</sup> University of Ljubljana, Faculty of Civil and Geodetic Engineering</p><p><sup>3</sup> University of Ljubljana, Biotechnical Faculty</p><p><strong> </strong></p><p><strong>Abstract</strong>:</p><p>Increases in the frequency of flood events are one of the major risk factors induced by climate change that lead to a higher vulnerability of affected communities. Natural water retention measures such as afforestation on hillslopes and floodplains are increasingly discussed as cost-effective alternatives to hard engineering structures for providing flood regulation, particularly when the evaluation also considers beneficial ecosystem services other than flood regulation. The present study provides combined modelling approach and a cost-benefit analysis (CBA) of the impacts of afforestation on peak river flows and on selected ecosystem services within the Glinščica river catchment in Slovenia. In order to investigate the effects, the hydrological model HEC-HMS, the hydraulic model HEC-RAS and the flood damage model KRPAN, that was developed specifically for Slovenia, are used. It was found that increasing the amount of tree cover results in a flood peak reduction ranging from 9-13 %. Flood extensions were significantly lower for most scenarios leading to reduced economic losses. However, a 100-years CBA only showed positive net present values (NPV) for one of the considered scenarios and the benefits were dominated by the flood regulation benefits, which were higher than for example biodiversity or recreational benefits. Based on our findings we conclude that afforestation as a sole natural water retention measure (NWRM) provides a positive NPV only in some cases (i.e. scenarios) and if additional ecosystem co-benefits are considered.</p>


2014 ◽  
Vol 6 (2) ◽  
pp. 386-399 ◽  
Author(s):  
Liu Liu ◽  
Zongxue Xu

Water resources in the Taihu basin, China, are not only facing the effects of a changing climate but also consequences of an intensive urbanization process with the abandonment of rural activities and the resulting changes in land use/land-cover. In the present work, the impact of climate change and urbanization on hydrological processes was assessed using an integrated modeling system, coupling the distributed hydrological model variable infiltration capacity and the hydraulic model ISIS, while future climate scenarios were projected using the regional climate model providing regional climate for impact studies. Results show a significant increasing trend of impervious surface area, while other types of land cover exhibit decreasing trends in 2021–2050. Furthermore, mean annual runoff under different future climate scenarios will increase, especially during flood seasons, consistent with the changes in precipitation and evapotranspiration for both spatial and temporal distribution. Maximum and mean flood water levels under two future scenarios will be higher than levels under the baseline scenario (1961–1990), and the return periods of storms resulting in the same flood water level will decrease significantly in comparison to the baseline scenario, implying more frequent occurrence of extreme floods in future. These results are significant to future flood control efforts and waterlog drainage planning in the Taihu basin.


2016 ◽  
Vol 11 (3) ◽  
pp. 110-125 ◽  
Author(s):  
Yan Li ◽  
Chunlu Liu

Urban flooding has been a severe problem for many cities around the world as it remains one of the greatest threats to the property and safety of human communities. In Australia, it is seen as the most expensive natural hazard. However, urban areas that are impervious to rainwater have been sharply increasing owing to booming construction activities and rapid urbanisation. The change in the built environment may cause more frequent and longer duration of flooding in floodprone urban regions. Thus, the flood inundation issue associated with the effects of land uses needs to be explored and developed. This research constructs a framework for modelling urban flood inundation. Different rainfall events are then designed for examining the impact on flash floods generated by land-use changes. Measurement is formulated for changes of topographical features over a real time series. Geographic Information System (GIS) technologies are then utilised to visualise the effects of land-use changes on flood inundation under different types of storms. Based on a community-based case study, the results reveal that the built environment leads to varying degrees of aggravation of urban flash floods with different storm events and a few rainwater storage units may slightly mitigate flooding extents under different storm conditions. Hence, it is recommended that the outcomes of this study could be applied to flood assessment measures for urban development and the attained results could be utilised in government planning to raise awareness of flood hazard.


2021 ◽  
Author(s):  
Veronica Fritz ◽  
Thakshajini Thaasan ◽  
Andrew Williams ◽  
Ranjith Udawatta ◽  
Sidath Mendis ◽  
...  

<p>Changing weather patterns and anthropogenic land use change significantly alter the terrestrial water cycle. A key variable that modulates the water cycle on the land surface is soil moisture and its variability in time and space. Hydrological models are used to simulate key components of the water cycle including infiltration, soil storage and uptake by plants. However, uncertainties remain in accurately representing soil moisture dynamics in models. Here, with the aid of several sensors installed at a 30-ha experimental research facility, we attempt to quantify differences in soil water storage across multiple land use types – cropped area, mosaic of turf grass and native plants, and an unkept weeded area as control land use. We will also discuss the accuracy of sensors to correctly measure soil water storage. Our study was conducted at an agricultural experimental station in Columbia, Missouri, USA. We use a variety of instruments to measure weather, evapotranspiration, and soil water. We used boundary layer scintillometers to measure near-surface turbulence, sensors to continuously track soil moisture and temperature, as well as weather stations for precipitation, air temperature, solar radiation and wind speed.  Changes in volumetric water content and soil temperature are measured at 5-minute intervals at 10-, 20-, and 40-cm soil depths to compare soil water storage among the three land use types. We also took soil samples before and after several storm events to calibrate the sensor readings at three sites. We, then, analyzed several storm events over a period of five months and compared the actual soil moisture and soil temperature dynamics at finer time intervals. With additional measurements of weather and boundary layer turbulence, we hope to reveal the landscape and weather control on soil moisture distribution across multiple land uses, and their subsequent impact on plant water uptake. Our preliminary results indicate that continuously disturbed agricultural lands depletes soil moisture at faster rates, which may present challenges in maintaining land productivity in the long term.</p>


2009 ◽  
Vol 13a (1) ◽  
pp. 149-159 ◽  
Author(s):  
Jan Tyszka

Estimation and economic valuation of the forest retention capacities Based on results concerning the forest impact on water cycling an attempt was undertaken to evaluate water retention in forests. The economic value of water retention was established assuming the cost of water storage in small reservoirs built in forest areas. Calculations did not account for differences resulting from different functions of naturally retained water and that stored with the use of technical methods. Considering volume and time of water retention in forests, the annual value of natural water retention in forests calculated per average hectare of the country area was estimated at 800 zł.


2021 ◽  
Author(s):  
Gayatri Singh

<p>The present study is to quantify the spatial-temporal pattern of the Land Use/ Land Cover Change (LULCC) during a decade (i.e., 2010 to 2020) in the Dehradun city which is situated in the foothills of the Himalaya, using Landsat data. The study helps in identifying the major bio-physical factors governing LULCC through modern geospatial techniques. Change detection shows that the study area experienced an increase in its urban area from 2010 to 2020 and a comparatively decrease in cropland and forest area. This was due to an increase in its urban population, rapid increase in industrialization and tourism during the same period. The change detection analysis further shows that 2010-2020, associated with change in croplands, change in built-up, forest lands, change in water-bodies, water levels, and rainfall. With comparison of above results and collected socio-economic data in this region, the impact of changing land use & bio-physical/ economic factors on agricultural profitability were analyzed. The result of this study could thus lead to a detailed and lucid spatiotemporal assessment of the major bio-physical factors. It is expected that the study will help in facilitating better policy making and infrastructure development for industries and urbanization.<br><br></p>


Author(s):  
D. Carlson

Abstract. Past studies in the Baton Rouge, Louisiana area considered streamwater quality during storm events but ignored water quality during low flow periods. This study includes determination of streamwater quality during low flow time periods for none watersheds in East Baton Rouge Parish, Louisiana. These samples were collected during dry-low flow periods as indicated by water levels at USGS stream gauging sites for each stream. Chemical analysis for ions was completed using colorimeters and gravimetric analysis for total dissolved solids (TDS) and total suspended solids (TSS). Land use appears to impact concentrations of ions, TDS and TSS in a variety of ways during periods of low flow. The two most rural watersheds, which are mainly underdeveloped, have higher concentrations of Fe and Mn. By contrast the three most urban watersheds, that are mainly commercial, industrial or residential, have higher concentrations of Si, SO4 and TDS.


2019 ◽  
Vol 44 (3) ◽  
pp. 376-397 ◽  
Author(s):  
Mahmoud H Darwish ◽  
Wael F Galal

One of the major geoenvironmental problems in the Kharga region arises from the haphazard exploitation of groundwater resources and sewage dumping, which have resulted in wastewater accumulation in the form of ponds. The impact of the spatial expansion of wastewater ponds in Kharga and the surrounding area has been so pervasive that ponds have become a source of environmental degradation. These ponds are distributed throughout the area, but the major lakes are located in the eastern and southeastern provinces. The water levels of these ponds are rising at a remarkable rate, especially in the winter, when there is no evaporation and rainfall can lead to overflows that flow towards cities, villages and farmlands. As a result of untreated sewage inflows, all the low surrounding spaces are at high risk of being influenced by these ponds. The objectives of this study were to evaluate the spatiotemporal threats posed by wastewater ponds and develop a conceptual model to estimate the geoenvironmental impacts on the surrounding areas. GIS and remote sensing were used to process all available geological, topographical, hydrogeological, hydrological, land use and environmental data. The pond expansion trend was estimated from Landsat time series from 1984 to 2018, and the results indicated that the wastewater bodies continuously increased and the land cover percentage decreased. The encroachment of wastewater ponds has resulted in extensive land cover disturbances in recent years, and land use change has affected nearly 2.5% of the region. The complexity of the problems associated with wastewater ponds in the Kharga district requires a comprehensive management plan that is effective in not only maintaining the stability of the ponds but also in improving the sociocultural and economic conditions around the ponds. Specifically, the wastewater drainage and accumulation system should be managed according to the surrounding functional context.


2013 ◽  
Vol 27 (9) ◽  
pp. 1740-1763 ◽  
Author(s):  
Sarah Mubareka ◽  
Christine Estreguil ◽  
Claudia Baranzelli ◽  
Carla Rocha Gomes ◽  
Carlo Lavalle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document