A 10Be-dated record of glacial retreat in Connemara, Ireland, after the Last Glacial Maximum and implications for North Atlantic climate

Author(s):  
Adrienne Foreman ◽  
Gordon Bromley ◽  
Brenda Hall ◽  
Margaret Jackson

<p>Late Pleistocene stadials were global events, associated with weakened Asian monsoons and Atlantic Meridional Overturning Circulation (AMOC), shifts in atmospheric boundaries and precipitation belts, and warming of the Southern Hemisphere and tropics. In the Northern Hemisphere, stadials are traditionally viewed as dramatic cooling events centred on the North Atlantic, with their abrupt onset attributed to meltwater-induced suppression of the AMOC due to melting of large Northern Hemisphere ice sheets. As warmer temperatures are required for sustained meltwater input, however, there is an apparent inconsistency with this model of Northern Hemisphere stadial cooling. To investigate this inconsistency, we reconstructed the timing and nature of glacial fluctuations in Connemara, western Ireland, located within the in the North Atlantic basin, during Heinrich Stadial 1 (HS1). Fifteen internally consistent cosmogenic beryllium-10 ages of erratic boulders indicate rapid and widespread deglaciation of the former Connemara ice centre at ~17.5 ka. The apparent abruptness of ice retreat, coupled with stratigraphic correlation with geomorphic features indicative of meltwater, suggest that HS1 deglaciation was driven by enhanced melting during the summer ablation season. This interpretation supports evidence for enhanced meltwater discharge and summertime warming elsewhere in Europe during HS1 but may conflict with the traditional view of stadials as severe cooling events.</p>

2018 ◽  
Vol 48 (10) ◽  
pp. 2495-2506 ◽  
Author(s):  
Paola Cessi

AbstractThe current paradigm for the meridional overturning cell and the associated middepth stratification is that the wind stress in the subpolar region of the Southern Ocean drives a northward Ekman flow, which, together with the global diapycnal mixing across the lower boundary of the middepth waters, feeds the upper branch of the interhemispheric overturning. The resulting mass transport proceeds to the Northern Hemisphere of the North Atlantic, where it sinks, to be eventually returned to the Southern Ocean at depth. Seemingly, the wind stress in the Atlantic basin plays no role. This asymmetry occurs because the Ekman transport in the Atlantic Ocean is assumed to return geostrophically at depths much shallower than those occupied by the interhemispheric overturning. However, this vertical separation fails in the North Atlantic subpolar gyre region. Using a conceptual model and an ocean general circulation model in an idealized geometry, we show that the westerly wind stress in the northern part of the Atlantic provides two opposing effects. Mechanically, the return of the Ekman transport in the North Atlantic opposes sinking in this region, reducing the total overturning and deepening the middepth stratification; thermodynamically, the subpolar gyre advects salt poleward, promoting Northern Hemisphere sinking. Depending on which mechanism prevails, increased westerly winds in the Northern Hemisphere can reduce or augment the overturning.


2019 ◽  
Vol 15 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Liang Ning ◽  
Jian Liu ◽  
Raymond S. Bradley ◽  
Mi Yan

Abstract. The spatial patterns of global temperature and precipitation changes, as well as corresponding large-scale circulation patterns during the latter part of the 9th and 5th millennia BP (4800–4500 versus 4500–4000 BP and 9200–8800 versus 8800–8000 BP) are compared through a group of transient simulations using the Community Climate System Model version 3 (CCSM3). Both periods are characterized by significant sea surface temperature (SST) decreases over the North Atlantic, south of Iceland. Temperatures were also colder across the Northern Hemisphere but warmer in the Southern Hemisphere. Significant precipitation decreases are seen over most of the Northern Hemisphere, especially over Eurasia and the Asian monsoon regions, indicating a weaker summer monsoon. Large precipitation anomalies over northern South America and adjacent ocean regions are related to a southward displacement of the Intertropical Convergence Zone (ITCZ) in that region. Climate changes in the late 9th millennium BP (the “8.2 ka event”) are widely considered to have been caused by a large freshwater discharge into the northern Atlantic, which is confirmed in a meltwater forcing sensitivity experiment, but this was not the cause of changes occurring between the early and latter halves of the 5th millennium BP. Model simulations suggest that a combination of factors, led by long-term changes in insolation, drove a steady decline in SSTs across the North Atlantic and a reduction in the North Atlantic Meridional Overturning Circulation (AMOC), over the past 4500 years, with associated teleconnections across the globe, leading to drought in some areas. Multi-century-scale fluctuations in SSTs and AMOC strength were superimposed on this decline. This helps explain the onset of neoglaciation around 5000–4500 BP, followed by a series of neoglacial advances and retreats during recent millennia. The “4.2 ka BP Event” appears to have been one of several late Holocene multi-century fluctuations that were embedded in the long-term, low-frequency change in climate that occurred after ∼4.8 ka. Whether these multi-century fluctuations were a response to internal centennial-scale ocean–atmosphere variability or external forcing (such as explosive volcanic eruptions and associated feedbacks) or a combination of such conditions is not known and requires further study.


2012 ◽  
Vol 3 (2) ◽  
pp. 801-825 ◽  
Author(s):  
G. Lohmann ◽  
K. Grosfeld ◽  
M. Butzin ◽  
P. Huybrechts ◽  
C. Zweck

Abstract. Decaying Northern Hemisphere ice sheets during deglaciation affect the high latitude hydrological balance in the North Atlantic and therefore the ocean circulation after the Last Glacial Maximum. Surprisingly, geological data suggest that meltwater fluxes of about 14–20 m sea-level equivalent flushed into the North Atlantic without significantly influencing the Atlantic meridional overturning circulation. Using a three-dimensional ocean circulation model coupled to an energy balance model of the atmosphere, we investigate the response of the ocean circulation to spatio-temporal variable deglacial freshwater discharges. Freshwater inputs are simulated by a three-dimensional thermo-mechanical ice sheet model of the Northern Hemisphere. In our experiments, we find a strong sensitivity of the ocean circulation when the deglacial meltwater is injected into the surface layers yielding a quasi shut-down. On the other hand, the parameterization of huge sub-glacial outbursts as so-called hyperpycnal flows are mimicked through bottom injections in ocean models leading to a reduced sensitivity of the overturning circulation against freshwater perturbations and providing a consistent representation of the deglacial climate evolution.


2018 ◽  
Vol 14 (11) ◽  
pp. 1639-1651 ◽  
Author(s):  
Gloria M. Martin-Garcia ◽  
Francisco J. Sierro ◽  
José A. Flores ◽  
Fátima Abrantes

Abstract. The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20–MIS14) is studied based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37∘34.285′ N, 10∘7.562′ W; 2585 m b.s.l.). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55∘ N, basin-wide paleoceanographic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100 ky cyclicity associated with the mid-Pleistocene transition. At the surface, this change consisted in the redistribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF), and the increase in the North Atlantic Deep Water (NADW) formation with respect to previous glacials. During glacials prior to MIS16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south–north, and east–west, thermal gradients and blocking the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the increase in the meridional overturning circulation, in combination with the northwestward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheet growth, which could have worked as a positive feedback to prolong the glacials towards 100 ky cycles.


2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2018 ◽  
Vol 15 (14) ◽  
pp. 4661-4682 ◽  
Author(s):  
Virginie Racapé ◽  
Patricia Zunino ◽  
Herlé Mercier ◽  
Pascale Lherminier ◽  
Laurent Bopp ◽  
...  

Abstract. The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO–PISCES) at 1∕2∘ spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air–sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36∘ N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air–sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC.


2013 ◽  
Vol 26 (18) ◽  
pp. 7187-7197 ◽  
Author(s):  
Wei Cheng ◽  
John C. H. Chiang ◽  
Dongxiao Zhang

Abstract The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.


Sign in / Sign up

Export Citation Format

Share Document