Tensile Crack Speed in Brittle Rocks

Author(s):  
Mehdi Serati

<p>An important issue in rapid brittle fracture is the limiting speed of crack propagation. It is widely believed that brittle mode I crack cannot propagate faster than the Rayleigh wave speed, or the speed of sound on a solid surface. Mode II cracks are also limited by longitudinal speed wave. The origin for this belief stems from the predictions of continuum mechanics. Once the crack speed reaches a theoretical upper limit in a material, which is most often larger than one fifth of the Rayleigh wave velocity, branching of a propagating crack occurs. To verify this hypothesis, this paper presents the results of an experimental program aimed at disclosing the size effect on the crack velocity in the Splitting Tensile Strength indirect test (i.e. the Brazilian Test) using high-speed photography techniques. Over 100 Brazilian tests with more than 10 different rock types at various diameters were prepared and tested according to the ASTM standard recommendations using either a servo hydraulic machine or an electromechanical load frame at a wide ranges of load/displacement rates. By adopting a high frame rate of above 100,000 frames per second (fps), crack initiation, propagation, and coalescence were captured to study the size effect on the crack speed and failure mode on the Brazilian test results.</p>

1978 ◽  
Vol 100 (1) ◽  
pp. 61-68 ◽  
Author(s):  
D. P. Townsend ◽  
L. S. Akin

An analysis was conducted for oil jet lubrication on the disengaging side of a gear mesh. Results of the analysis were computerized and used to determine the oil jet impingement depth for several gear ratios and oil jet to pitch line velocity ratios. An experimental program was conducted on the NASA gear test rig using high-speed photography to experimentally determine the oil jet impingement depth on the disengaging side of mesh. Impingement depth reaches a maximum at gear ratio near 1.5 where chopping by the leading gear tooth limits the impingement depth. The pinion impingement depth is zero above a gear ratio of 1.172 for a jet velocity to pitch time velocity ratio of 1.0 and is similar for other velocity ratios. The impingement depth for gear and pinion are equal and approximately one-half the maximum at a gear ratio of 1.0. Impingement depth on either the gear or pinion may be improved by relocation of the jet from the pitch line or by changing the jet angle. Results of the analysis were verified by experimental results using a high-speed camera and a well lighted oil jet.


Author(s):  
A. S. Nejad ◽  
S. A. Ahmed ◽  
L. A. Roe ◽  
R. S. Gabruk

The objectives of this experimental program are two fold; first, to investigate, understand, and document the effects of heat release on the characteristics of a dump combustor flowfield; secondly, to provide a benchmark set of experimental data to aid the development of time averaged CFD codes. A limited number of velocity profiles are reported in this manuscript to illustrate the effects of combustion and heat release, at an equivalence ratio of 0.65, on dump combustor flows. High-speed photography and spectral analysis complemented velocity measurements and served to examine and characterize combustion instability limits. Results indicate that combustion altered the dump combustor flowfield and significantly reduced the length of the corner recirculation region.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 559
Author(s):  
Lakshminath Kundanati ◽  
Prashant Das ◽  
Nicola M. Pugno

Aquatic predatory insects, like the nymphs of a dragonfly, use rapid movements to catch their prey and it presents challenges in terms of movements due to drag forces. Dragonfly nymphs are known to be voracious predators with structures and movements that are yet to be fully understood. Thus, we examine two main mouthparts of the dragonfly nymph (Libellulidae: Insecta: Odonata) that are used in prey capturing and cutting the prey. To observe and analyze the preying mechanism under water, we used high-speed photography and, electron microscopy. The morphological details suggest that the prey-capturing labium is a complex grasping mechanism with additional sensory organs that serve some functionality. The time taken for the protraction and retraction of labium during prey capture was estimated to be 187 ± 54 ms, suggesting that these nymphs have a rapid prey mechanism. The Young’s modulus and hardness of the mandibles were estimated to be 9.1 ± 1.9 GPa and 0.85 ± 0.13 GPa, respectively. Such mechanical properties of the mandibles make them hard tools that can cut into the exoskeleton of the prey and also resistant to wear. Thus, studying such mechanisms with their sensory capabilities provides a unique opportunity to design and develop bioinspired underwater deployable mechanisms.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3713
Author(s):  
Soyeon Lee ◽  
Bohyeok Jeong ◽  
Keunyeol Park ◽  
Minkyu Song ◽  
Soo Youn Kim

This paper presents a CMOS image sensor (CIS) with built-in lane detection computing circuits for automotive applications. We propose on-CIS processing with an edge detection mask used in the readout circuit of the conventional CIS structure for high-speed lane detection. Furthermore, the edge detection mask can detect the edges of slanting lanes to improve accuracy. A prototype of the proposed CIS was fabricated using a 110 nm CIS process. It has an image resolution of 160 (H) × 120 (V) and a frame rate of 113, and it occupies an area of 5900 μm × 5240 μm. A comparison of its lane detection accuracy with that of existing edge detection algorithms shows that it achieves an acceptable accuracy. Moreover, the total power consumption of the proposed CIS is 9.7 mW at pixel, analog, and digital supply voltages of 3.3, 3.3, and 1.5 V, respectively.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940045 ◽  
Author(s):  
Z. Zhang ◽  
R. Wang ◽  
G. Gou ◽  
H. Chen ◽  
W. Gao

In this paper, we study the droplet transition behavior of narrow gap laser wire filling welding under the condition of changing welding speed and wire feeding speed, and it was observed by high-speed photography. It was found that with the increase of welding speed, the frequency of droplet transfer was reduced and the transition period was prolonged. With the increase of wire feeding speed, the wire was not fully melted and finally inserted into the molten pool.


Sign in / Sign up

Export Citation Format

Share Document