Proof of Concept with Distributed Temperature Sensing for Crack Detection on Dikes

Author(s):  
Leonardo Duarte Campos ◽  
Juan Pablo Aguilar López

<p>Cracks occurring on dike surfaces due to droughts, are a big threat for the safety of flood defence infrastructure as they increase infiltration rates and reduce the resistance to mass rotational failure (slope stability). Hence, an effective and sustainable monitoring system for crack detection is of paramount importance given the increase in frequency of drought events. Conventional methods heavily rely on visual inspections by expert observers, drone technologies survey, or destructive techniques such as sampling and trenching. Most of them result sparse qualitative and labor-intensive assessments. In this project, we aim to develop a method which combines two different sensing techniques —distributed temperature sensing (DTS) and conventional video cameras— for detecting the cracks on the dike surface. In contrast to earlier studies using DTS to measure the temperature changes during high water levels in the riverside slope and to detect seepage changes, we will be measuring the superficial moisture content on the riverside and the landside slopes of the dike, and use it as a proxy for crack detection in combination with the camera images and deep learning techniques. It is expected that by including the DTS measurements, the detection of cracks may outperform the actual methods in an economically and more densely manner along several kilometers of dikes in real time.</p>

Ground Water ◽  
2020 ◽  
Vol 58 (6) ◽  
pp. 913-923
Author(s):  
Ricardo Medina ◽  
Christine Pham ◽  
Megan H. Plumlee ◽  
Adam Hutchinson ◽  
Matthew W. Becker ◽  
...  

2013 ◽  
Vol 8 (3-4) ◽  
pp. 375-381 ◽  
Author(s):  
Mats Vosse ◽  
Rémy Schilperoort ◽  
Cornelis de Haan ◽  
Jaap Nienhuis ◽  
Marcel Tirion ◽  
...  

Fibre-optic Distributed Temperature Sensing (DTS) is a widely used technique. The technique measures temperature with a high resolution and high frequency along cables with lengths up to kilometers. This paper focuses on the application of DTS in sewer systems with the aim of locating illicit connections, and especially on an automated way to analyze the large amount of data. The automated procedure scans the data for sudden temperature changes that are not caused by rainfall. These changes are marked as possible illicit connections when temperature changes are significantly larger than noise levels in the measurements. By adding artificial spills to field measurements it is concluded that the procedure works for the defined spills. Also when applied to field measurements it is concluded that the automated procedure produces good results.


2007 ◽  
Vol 158 (1-2) ◽  
pp. 14-21
Author(s):  
Vasyl Sabadosh ◽  
Oleg Suprunenko

The upper Theresian Valley lies along the southwest-facing ridge of the Ukrainian Carpathians. Despite expansive forestation high water levels are frequent. The forest belongs to the state and is centrally administrated. Felling is sometimes outsourced to private companies and private companies have also been founded to process the timber. Job opportunities have become fewer and illegal work is increasing. A new democratic awareness has emerged since the «Orange Revolution» in 2004. With foreign investors, however, new risks emerge. The authors recommend giving monies from forest management to the communities, the founding of new wood processing enterprises and more transparent information.


Author(s):  
Anton O. Chernutsky ◽  
Dmitriy A. Dvoretskiy ◽  
Ilya O. Orekhov ◽  
Stanislav G. Sazonkin ◽  
Yan Zh. Ososkov ◽  
...  

2021 ◽  
Vol 7 (20) ◽  
pp. eabe7136
Author(s):  
Robert Law ◽  
Poul Christoffersen ◽  
Bryn Hubbard ◽  
Samuel H. Doyle ◽  
Thomas R. Chudley ◽  
...  

Measurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (~0.65 m), distributed-fiber-optic temperature-sensing profile from a 1043-m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland. We report substantial but isolated strain heating within interglacial-phase ice at 208 to 242 m depth together with strongly heterogeneous ice deformation in glacial-phase ice below 889 m. We also observe a high-strain interface between glacial- and interglacial-phase ice and a 73-m-thick temperate basal layer, interpreted as locally formed and important for the glacier’s fast motion. These findings demonstrate notable spatial heterogeneity, both vertically and at the catchment scale, in the conditions facilitating the fast motion of marine-terminating glaciers in Greenland.


The Holocene ◽  
2020 ◽  
pp. 095968362098168
Author(s):  
Christian Stolz ◽  
Magdalena Suchora ◽  
Irena A Pidek ◽  
Alexander Fülling

The specific aim of the study was to investigate how four adjacent geomorphological systems – a lake, a dune field, a small alluvial fan and a slope system – responded to the same impacts. Lake Tresssee is a shallow lake in the North of Germany (Schleswig-Holstein). During the Holocene, the lake’s water surface declined drastically, predominately as a consequence of human impact. The adjacent inland dune field shows several traces of former sand drift events. Using 30 new radiocarbon ages and the results of 16 OSL samples, this study aims to create a new timeline tracing the interaction between lake and dunes, as well, as how both the lake and the dunes reacted to environmental changes. The water level of the lake is presumed to have peaked during the period before the Younger Dryas (YD; start at 10.73 ka BC). After the Boreal period (OSL age 8050 ± 690 BC) the level must have undergone fluctuations triggered by climatic events and the first human influences. The last demonstrable high water level was during the Late Bronze Age (1003–844 cal. BC). The first to the 9th century AD saw slightly shrinking water levels, and more significant ones thereafter. In the 19th century, the lake area was artificially reduced to a minimum by the human population. In the dunes, a total of seven different phases of sand drift were demonstrated for the last 13,000 years. It is one of the most precisely dated inland-dune chronologies of Central Europe. The small alluvial fan took shape mainly between the 13th and 17th centuries AD. After 1700 cal. BC (Middle Bronze Age), and again during the sixth and seventh centuries AD, we find enhanced slope activity with the formation of Holocene colluvia.


Sign in / Sign up

Export Citation Format

Share Document