Sea state trends and variability: consistency between the ESA Sea State Climate Change Inititative dataset, ERA5 winds and microseisms

Author(s):  
Matias Alday ◽  
Marine De Carlo ◽  
Guillaume Dodet ◽  
Mickael Accensi ◽  
Eleonore Stutzmann ◽  
...  

<p>Abstract: Wave hindcasts of long time series ( > 30 years) have been instrumental in understanding the wave climate. However, it is still difficult to have a consistent reanalysis suitable for study of trends and interannual variability. Here we explore the consistency of wave hindcast with independent observations from moored buoys, satellite altimeters, and  microseism data. We use the ECMWF 5th generation re-analysis (ERA5) winds to drive two wave models, using either ECMWF WAM (Bidlot et al. 2019) or WAVEWATCH III (The WAVEWATCH III Develoment Group 2019, Alday et al. 2020). We also use seismic data in the dominant double-frequency band, around 5 s period, that are generated by opposing waves of equal frequencies and compare these to modeled microseims. We find that the inter-platform corrections in the ESA CCI Version 1.1 dataset (Dodet et al. 2020) introduced a trend that differs from the microseism trends. However, the results converge when using a revised correction of this dataset. We also look at the microseism spectral signature of large storms in the North Atlantic and discuss how we may compare the severity of different storms that move over different ocean bathymetry with different wave to microseism conversions. </p><p>References: Stopa, J. E., Ardhuin, F., Stutzmann, E., & Lecocq, T. (2019).  Sea state trends and variability: Consistency between models, altimeters, buoys, and seismic data (1979–2016). Journal of Geophysical Research: Oceans, 124. https://doi.org/10.1029/2018JC014607 </p><p>Dodet, G., Piolle, J.-F., Quilfen, Y., Abdalla, S., Accensi, M., Ardhuin, F., Ash, E., Bidlot, J.-R., Gommenginger, C., Marechal, G., Passaro, M., Quartly, G., Stopa, J., Timmermans, B., Young, I., Cipollini, P., and Donlon, C.: The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations, Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020 , 2020.</p>

2021 ◽  
Vol 9 (2) ◽  
pp. 208
Author(s):  
Valentina Vannucchi ◽  
Stefano Taddei ◽  
Valerio Capecchi ◽  
Michele Bendoni ◽  
Carlo Brandini

A 29-year wind/wave hindcast is produced over the Mediterranean Sea for the period 1990–2018. The dataset is obtained by downscaling the ERA5 global atmospheric reanalyses, which provide the initial and boundary conditions for a numerical chain based on limited-area weather and wave models: the BOLAM, MOLOCH and WaveWatch III (WW3) models. In the WW3 computational domain, an unstructured mesh is used. The variable resolutions reach up to 500 m along the coasts of the Ligurian and Tyrrhenian seas (Italy), the main objects of the study. The wind/wave hindcast is validated using observations from coastal weather stations and buoys. The wind validation provides velocity correlations between 0.45 and 0.76, while significant wave height correlations are much higher—between 0.89 and 0.96. The results are also compared to the original low-resolution ERA5 dataset, based on assimilated models. The comparison shows that the downscaling improves the hindcast reliability, particularly in the coastal regions, and especially with regard to wind and wave directions.


2020 ◽  
Author(s):  
Nikolaus Groll

<p>Wave hindcasts are still required as improved knowledge of climate variables representing the present marine climate are needed. Most long regional wave hindcasts are driven by numerically downscaled wind fields from global reanalysis. Whereas this approach gives a good representation of the regional wave climate in general, there are some deficits in the characteristics of extreme events. Using regional atmospheric reanalysis, which assimilates atmospheric observations into the numerical model, a better description of extreme events is expected. The regional atmospheric reanalysis COSMO-REA6 from the German Weather Service (DWD) showed that it is capable of a better representation of atmospheric extreme events. For the new regional wave hindcast, covering the North Sea and the Baltic Sea, we use the COSMO-REA6 to force the wave model WAM. It is shown, that his new wind hindcast leads to an improved representation of extreme wave events compared to other regional wave hindcasts and thus supports an important contribution to the understanding of the wave climate of extremes and for the design phase of offshore activities.</p>


2016 ◽  
Author(s):  
Justin E. Stopa ◽  
Fabrice Ardhuin ◽  
Fanny Girard-Ardhuin

Abstract. Over the past decade, the diminishing Arctic sea ice has impacted the wave field which is principally dependent on the ice-free area and wind. This study characterizes the wave climate in the Arctic using detailed sea state information from a wave hindcast and merged altimeter dataset spanning 1992–2014. The wave model uses winds from the Climate Forecast System Reanalysis and ice concentrations derived from satellites as input. The ice concentrations have a grid spacing of 12.5 km, which is sufficiently able to resolve important features in the marginal ice zone. The model performs well, verified by the altimeters and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction. This creates distinct features in the wind-seas and swells. The increase in wave heights is caused by the loss of sea ice and not the wind verified by the altimeters and model. However, trends are convoluted by inter-annual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. The Nordic-Greenland Sea is the only region with negative trends in wind speed and wave height and is related to the NAO. Swells are becoming more prevalent and wind-sea steepness is declining which make the impact on sea ice uncertain. It is inconclusive how important wave-ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.


1984 ◽  
Vol 1 (19) ◽  
pp. 53
Author(s):  
V. Barthel ◽  
E.R. Funke

Long waves of small amplitudes can excite harbour oscillations as well as the motion of floating structures or vessels. Field data from the Weser Estuary, German Bight of the North Sea were analysed with respect to waves with periods greater than 8 s. After preprocessing of the mostly noisy data records, special analysis incorporated the reconstruction of incorrectly recorded frequency components below .03 Hz and bivariate distributions of heights and periods. Results suggest that long wave activity increases towards the inner estuary. Grouping properties are dependent on wind direction and on directionality of the sea state. Further investigations and model studies for the response of travelling vessels to this wave climate are recommended.


2017 ◽  
Vol 9 (2) ◽  
pp. 955-968 ◽  
Author(s):  
Nikolaus Groll ◽  
Ralf Weisse

Abstract. Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949–2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM–North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.


Author(s):  
Nobuhito Mori ◽  
Risako Kishimoto ◽  
Tomoya Shimura

Climate change is highly expected to give significant impact on coastal hazards and environment. The future projections of wave climate under global warming scenarios have been carried out and shows changes in wave heights depending on the regions (e.g., Hemer et al., 2013). Beside the long-term trends of wave climate, annual to decadal changes are also important to understand variability. For example, the North Atlantic Oscillation (NAO) is highly correlated to monthly mean wave height along the western European coast. However, variability of wave climate is not well understood over the globe, quantitatively. Additionally, the standard coastal engineers regard stationary process for wave environment for solving coastal problems. This study analyzes global wave climate variability for the last half century based on principal component analysis of atmospheric forcing (sea surface winds U10 and sea level pressure P) and wave hindcast.


2017 ◽  
Author(s):  
Nikolaus Groll ◽  
Ralf Weisse

Abstract. Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such statistics are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949–2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogenous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the https://doi.org/10.1594/WDCC/coastDat-2_WAM-North_Sea (Groll and Weisse, 2016) or via the coastDat web-page http://www.coastdat.de.


2018 ◽  
Vol 68 (11) ◽  
pp. 1593-1604 ◽  
Author(s):  
Margarita Markina ◽  
Alexander Gavrikov ◽  
Sergey Gulev ◽  
Bernard Barnier

Author(s):  
Jelena Janjić ◽  
Sarah Gallagher ◽  
Emily Gleeson ◽  
Frédéric Dias

Using wind speeds and sea ice fields from the EC-Earth global climate model to run the WAVEWATCH III model, we investigate the changes in the wave climate of the northeast Atlantic by the end of the 21st century. Changes in wave climate parameters are related to changes in wind forcing both locally and remotely. In particular, we are interested in the behavior of large-scale atmospheric oscillations and their influence on the wave climate of the North Atlantic Ocean. Knowing that the North Atlantic Oscillation (NAO) is related to large-scale atmospheric circulation, we carried out a correlation analysis of the NAO pattern using an ensemble of EC-Earth global climate simulations. These simulations include historical periods (1980–2009) and projected changes (2070–2099) by the end of the century under the RCP4.5 and RCP8.5 Representative Concentration Pathway (RCP) forcing scenarios with three members in each RCP wave model ensemble. In addition, we analysed the correlations between the NAO and a range of wave parameters that describe the wave climate from EC-Earth driven WAVEWATCH III model simulation over the North Atlantic basin, focusing on a high resolution two-way nested grid over the northeast Atlantic. The results show a distinct decrease by the end of the century and a strong positive correlation with the NAO for all wave parameters observed.


Sign in / Sign up

Export Citation Format

Share Document