The impact of hedges maturation on soil organic carbon stocks in agricultural landscapes

Author(s):  
Sofia Biffi ◽  
Pippa j Chapman ◽  
Richard P Grayson ◽  
Guy Ziv

<p>Hedgerows can provide a wide range of regulatory ecosystem services within improved grassland landscapes, such as soil function improvement, soil erosion reduction, biodiversity, water quality, and flood prevention and mitigation. Because of their beneficial effects, farmers are incentivised to retain their hedgerows and the planting of hedges has been encouraged in agri-environment schemes in Europe. Today, hedgerow planting it is one of the most popular practices adopted in the Countryside and Environmental Stewardships in England. The role of hedgerows in climate change mitigation has been increasingly recognized over the past decade, however, while other services have been more widely studies, less is known about hedges soil organic carbon (SOC) storage capacity. The Resilient Dairy Landscapes project aims at identifying strategies to reconcile dairy systems productivity and environment in the face of climate change, and with the Committee on Climate Change calling for a 30% - 40% increase in hedgerow length by 2050 in the UK, it is important to determine the role of hedgerows in meeting Net Zero targets. In this study, we estimate the extent of SOC stock beneath hedges and how it may vary with depth, hedge management and age, as well as how it may compare to SOC stock in adjacent agricultural fields. Thus, we measured SOC under 2-4 years old, 10 years old, 37 years old, and 40+ years old hedgerows at 10 cm intervals up to 50 cm of depth under 32 hedges located on dairy farms in Cumbria, UK. We found that the time since planting and the depth of samples play a crucial role in the amount of SOC stock stored underneath hedgerows when accounting for differences in soil type. Our results contribute measurable outcomes towards the estimate of targets for Net Zero 2050 and the extent of ecosystem services provision by hedgerow planting in agricultural landscapes.  </p>

2020 ◽  
Author(s):  
Reimund Roetter ◽  
Simon Scheiter ◽  
Munir Hoffmann ◽  
Kwabena Ayisi ◽  
Paolo Merante ◽  
...  

<p><span><span>On the background of increasing welfare and continued population growth, there is an ever-increasing pressure on land and other natural resources in many parts of the world. The situation is, however, particularly severe in the drylands of Sub-Saharan Africa. Southern African landscapes, composed of arable lands, tree orchards and rangelands, provide a range of important ecosystem functions. These functions are increasingly threatened by land use changes through competing claims on land by agriculture, tourism, mining and other sectors, and by environmental change, namely climate change and soil degradation. Among others, climate models project that drought risk in the region will increase considerably. Based on comprehensive data sets originating from previous groundwork by several collaborative projects on the functioning of these ecosystems, a number of biophysical and bio-economic models have been developed and evaluated. In the framework of the South African Limpopo Landscapes network (SALLnet) we have now refined and tailored these models for combined use for the assessment of changes in multiple functions of the prevailing agroecosystems when affected by alternative climate and land management scenarios - from field to regional scale. We apply vegetation models (such as aDGVM), crop models (such as APSIM) and integrative farm level models (e.g. agent-based) for different farming systems in conjunction with geo-referenced databases. Model outputs are combined to assess the impact of management x environment interactions on various ecosystem functions. Of special interest in our study are the ecosystem services related to the provision of food, feed and fuel, soil and water conservation, as well as recycling and restoring carbon and nutrients in soil. To illustrate how the combination of various modelling components can work in assessing management intervention effects under different environmental conditions on landscape level ecosystem services, a case study was defined in Limpopo province, South Africa. We investigated effects of current management practices and an intensification scenario over a longer period of years on soil organic carbon change under rangeland and arable land, potential erosion, productive water use, biomass production, monthly feed gaps, and rangeland habitat quality. Tentative results showed that sustainable intensification closed the livestock feed gap, but further reduced soil organic carbon. More generally, coupling the output of vegetation and crop models regionally calibrated with sound ground/ experimental data appears promising to provide meaningful insights into the highly complex interconnections of different ecosystem services at a landscape level.</span></span></p>


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 24
Author(s):  
Yui Osanai ◽  
Oliver Knox ◽  
Gunasekhar Nachimuthu ◽  
Brian Wilson

Agricultural practices (e.g. tillage, crop rotation and fertiliser application) have a strong influence on the balance between carbon (C) input and output by altering physicochemical and microbial properties that control decomposition processes in the soil. Recent studies suggest that the mechanisms by which agricultural practice impacts soil organic carbon (SOC) dynamics in the topsoil may not be the same as those in the subsoil. Here, we assessed SOC stock, soil organic fractions and nitrogen availability to 1.0 m in soils under a cotton (Gossypium hirsutum L.)-based cropping system, and assessed the impact of agricultural management (three historical cropping systems with or without maize (Zea mays L.) rotation) on SOC storage. We found that the maize rotation and changes in the particulate organic fraction influenced SOC stock in the topsoil, although the overall change in SOC stock was small. The large increase in subsoil SOC stock (by 31%) was dominated by changes in the mineral-associated organic fraction, which were influenced by historical cropping systems and recent maize rotation directly and indirectly via changes in soil nitrogen availability. The strong direct effect of maize rotation on SOC stock, particularly in the subsoil, suggests that the direct transfer of C into the subsoil SOC pool may dominate C dynamics in this cropping system. Therefore, agricultural management that affects the movement of C within the soil profile (e.g. changes in soil physical properties) could have a significant consequence for subsoil C storage.


2020 ◽  
Author(s):  
Chiara Ferré ◽  
Gianni Facciotto ◽  
Sara Bergante ◽  
Roberto Comolli

<p>We explored the effects of conversion from vineyard to tree plantation on humus forms, soil organic carbon (SOC) stocks and other soil properties by sampling paired plots in a hilly area of Monferrato (Piedmont, Italy).</p><p>The study area is located at Rosignano Monferrato (AL) and includes a vineyard (VY) and a nearby 30-years-old tree plantation (TP) for wood production that replaced an existing vineyard, where eight poplar clones were consociated with other timber species (wild cherry, European ash, manna ash, deodar cedar). The area under study covers 3 ha and extends along a slighty-wavy slope with an average gradient of 15%; according to the WRB classification, soils are Calcaric Cambisols (Loamic).</p><p>The impact of land use change on soil properties was evaluated considering the spatial variability of soil characteristics, testing for autocorrelation among the model residuals. Soil sampling was performed from 3 layers (0-10 cm, 10-40 cm and 40-70 cm) at 61 and 69 points in the VY and the TP respectively, to characterize soil pH in water, organic carbon content and SOC stock, C:N ratio, soil texture and total carbonates. The common pedological origin of soils within the study area was verified and confirmed by comparability of soil texture and carbonates content of the deeper layer.</p><p>At TP the humus forms were described and classified; the organic horizons were sampled and analyzed for OC content determination.</p><p>Statistical analyses showed significant (p-value < 0.05) differences for all the investigated layers between the considered land uses with regard to pH, SOC stock and C:N ratio.</p><p>Our study provided evidence that: (1) the conversion from vineyard to tree plantation resulted in the appearance of organic horizons: the main humus forms in TP were Mull and Amphi; (2) 30 years of tree plantation strongly modified SOC stock, resulting in an increase of 26% in the first 70 cm, which became 42% if the organic layers were included; (2) soil acidification (pH difference of 0.4) and change in SOC type (C:N increase of 1) were also observed in TP compared to VY; and (3) the spatial distribution of soil properties in the VY were affected by erosive and depositional dynamics unlike the TP where vegetation counterbalance erosion.</p>


Soil Research ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 64 ◽  
Author(s):  
Fiona Robertson ◽  
Doug Crawford ◽  
Debra Partington ◽  
Ivanah Oliver ◽  
David Rees ◽  
...  

Increasing soil organic carbon (SOC) storage in agricultural soils through changes to management may help to mitigate rising greenhouse gas emissions and sustain agricultural productivity and environmental conditions. However, in order to improve assessment of the potential for increasing SOC storage in the agricultural lands of Victoria, Australia, further information is required on current SOC levels and how they are related to environmental conditions, soil properties and agricultural management. Therefore, we measured stocks of SOC at 615 sites in pasture and cropping systems in Victoria, encompassing eight regions, five soil orders and four management classes (continuous cropping, crop–pasture rotation, sheep or beef pasture, and dairy pasture), and explored relationships between the C stocks and environment, soil and management. The results showed an extremely wide range in SOC, from 2 to 239 t C/ha (0–30 cm). Most of this variation was attributable to climate; almost 80% of the variation in SOC stock was related to annual rainfall or vapour pressure deficit (i.e. humidity). Texture-related soil properties accounted for a small, additional amount of variation in SOC. After accounting for climate, differences in SOC between management classes were small and often not significant. Management practices such as stubble retention, minimum cultivation, perennial pasture species, rotational grazing and fertiliser inputs were not significantly related to SOC stock. The relationships between SOC and environment, soil and management were scale-dependent. Within individual regions, the apparent influence of climate and soil properties on SOC stock varied, and in some regions, much of the variation in SOC stock remained unexplained. The results suggest that, across Victoria, there is a general hierarchy of influence on SOC stock: climate > soil properties > management class > management practices.


2006 ◽  
Vol 86 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A J VandenBygaart

The distribution of soil organic carbon (SOC) in the landscape is governed by multiple factors and processes occurring at multiple scales. Thus, an understanding of landscape processes and pedology should aid in designing approaches to study SOC stock changes. Numerous factors affect distribution of SOC in the landscape at varying spatial and temporal scales. Each of these is summarized to set the stage for outlining a proposed approach to monitoring SOC in the agricultural landscape. Many tools are used to assess the variability of soil properties at varying spatial scales. Pedological knowledge and interpretation of landscape processes can be used to understand the spatial distribution of SOC in the landscape. I show that semi-variograms and the minimum detectable difference may be of limited value in deriving a universal approach to assess SOC change. Issues to be considered or resolved before initiating a monitoring system include depth of sampling and influence of management, compositing and sub-sampling, changes in bulk density, landscape effects and SOC dynamics. After considering these issues, I propose an approach to monitor SOC stock change in agroecosystems, acknowledging that any methodology likely cannot be strictly and universally applicable. The approach considers issues such as location, plot layout, and experimental and statistical design. Such an approach, derived from a landscape and pedology perspective, may make the measurement and verification of SOC at varying scales a less daunting task. Key words: Soil organic carbon change, landscape, pedology, experimental design


2014 ◽  
Vol 11 (1) ◽  
pp. 1561-1585 ◽  
Author(s):  
M. van der Velde ◽  
J. Balkovič ◽  
C. Beer ◽  
N. Khabarov ◽  
M. Kuhnert ◽  
...  

Abstract. We investigate the impact of future climate variability on the potential vulnerability of soils to erosion and the consequences for soil organic carbon (SOC) in European croplands. Soil erosion is an important carbon flux not characterized in Earth System Models. We use a~European implementation of EPIC, driven by reference climate data (CNTRL), and climate data with reduced variability (REDVAR). Whether erosion regimes will change across European cropland depends on the spatial conjunction of expected changes in climate variability and physiographic conditions conducive to erosion. We isolated the effect of erosion by performing simulations with and without erosion. Median CNTRL and REDVAR erosion rates equalled 14.4 and 9.1 ton ha−1, and 19.1 and 9.7, for 1981–2010 and 2071–2100, respectively. The total amount of carbon lost from European cropland due to erosion was estimated at 769 Tg C for 1981–2010 (from a total storage of 6197 Tg C without erosion) under CNTRL climate. Climate trend impacts reduce the European cropland SOC stock by 578 Tg C without – and by 683 Tg C with erosion, from 1981 to 2100. Climate variability compounds these impacts and decreases the stock by an estimated 170 Tg without erosion and by 314 Tg C with erosion, by the end of the century. Future climate variability and erosion will thus compound impacts on SOC stocks arising from gradual climate change alone.


Author(s):  
Jean-Francois Rochecouste ◽  
Paul Dargusch

This paper examines opportunities for the United Nations Framework Convention on Climate Change (UNFCCC) to consider financial mechanisms for the uptake of conservation agriculture (CA) practices in developing countries to reverse the loss of soil organic carbon. Conservation agriculture, commonly described as the reduction of tillage, maintaining soil cover and introducing crop rotations, is currently being promoted by the United Nations Food and Agriculture Organisation as the most sustainable form of farming into the future. It was found that the increasing uptake of CA practices by developed countries improved soil organic carbon benefit and reduced energy inputs. Furthermore industrial agriculture has evolved a range of new technologies that can be adapted in developing countries to improve food security, increase environmental benefits and provide carbon offsets. This is in line with the climate change mitigation strategy of putting atmospheric carbon back in the soil to increase soil organic carbon. It is also noted that recognising conservation agriculture methodologies in carbon offset schemes would require the development of alternative economic instruments specifically to support small landholder changes in farming practices such as exist for hydrological and biodiversity ecosystem services schemes. Some of the constraints for small landowners providing agricultural carbon offsets are investment capital and an established trading mechanism that recognises the inherent issues of agriculture. Adaptation of conservation agricultural practices from industrialised agriculture to developing countries is examined along with current offset schemes being proposed in developed countries. A review of the literature examines Payment for Ecosystem Services (PES) and suggests a number of methodologies for consideration as part of an offset market. It was found that the two main obstacles in market terms are the acceptance of a level of soil carbon sequestration that can be easily calculated and the degree of attached liability for farmers in selling the equivalent of a Certified Emission Reduction unit from a highly volatile system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Purity Rima Mbaabu ◽  
Daniel Olago ◽  
Maina Gichaba ◽  
Sandra Eckert ◽  
René Eschen ◽  
...  

AbstractGrassland degradation and the concomitant loss of soil organic carbon is widespread in tropical arid and semi-arid regions of the world. Afforestation of degraded grassland, sometimes by using invasive alien trees, has been put forward as a legitimate climate change mitigation strategy. However, even in cases where tree encroachment of degraded grasslands leads to increased soil organic carbon, it may come at a high cost since the restoration of grassland-characteristic biodiversity and ecosystem services will be blocked. We assessed how invasion by Prosopis juliflora and restoration of degraded grasslands in a semi-arid region in Baringo, Kenya affected soil organic carbon, biodiversity and fodder availability. Thirty years of grassland restoration replenished soil organic carbon to 1 m depth at a rate of 1.4% per year and restored herbaceous biomass to levels of pristine grasslands, while plant biodiversity remained low. Invasion of degraded grasslands by P. juliflora increased soil organic carbon primarily in the upper 30 cm and suppressed herbaceous vegetation. We argue that, in contrast to encroachment by invasive alien trees, restoration of grasslands in tropical semi-arid regions can both serve as a measure for climate change mitigation and help restore key ecosystem services important for pastoralists and agro-pastoralist communities.


Sign in / Sign up

Export Citation Format

Share Document