Estimation of photovoltaic energy generated in urban environments, case: Medellín Metropolitan Area (MMA) (Colombia)

Author(s):  
Nathalia Correa Sánchez ◽  
Oscar José Mesa Sánchez ◽  
Carlos David Hoyos Ortíz

<p>This work considers photovoltaic solar energy as an alternative to promote the diversification of the energy matrix and contribute to improving access to the citizens of Medellín (MMA) Metropolitan Area,  Colombia. The objective is a more sustainable and resilient energy use.  To achieve this, we assess how much of the energy demand can be generated within the city, integrated into the urban morphology at the roofs of existing buildings. We use meteorological information and power measurements from three experimental solar panels. We analyze the photovoltaic energy potential in these Representative Urban Areas (RUA) and provide information relevant to the whole Valley's context to guide sustainable and resilient energy planning.  One particular result is about the energy reduction factor due to cloudiness, which quantifies how energy would vary under the region's cloud conditions.</p>

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1869 ◽  
Author(s):  
Alexandre Lucas ◽  
Giuseppe Prettico ◽  
Marco Flammini ◽  
Evangelos Kotsakis ◽  
Gianluca Fulli ◽  
...  

Electric vehicle (EV) charging infrastructure rollout is well under way in several power systems, namely North America, Japan, Europe, and China. In order to support EV charging infrastructures design and operation, little attempt has been made to develop indicator-based methods characterising such networks across different regions. This study defines an assessment methodology, composed by eight indicators, allowing a comparison among EV public charging infrastructures. The proposed indicators capture the following: energy demand from EVs, energy use intensity, charger’s intensity distribution, the use time ratios, energy use ratios, the nearest neighbour distance between chargers and availability, the total service ratio, and the carbon intensity as an environmental impact indicator. We apply the methodology to a dataset from ElaadNL, a reference smart charging provider in The Netherlands, using open source geographic information system (GIS) and R software. The dataset reveals higher energy intensity in six urban areas and that 50% of energy supplied comes from 19.6% of chargers. Correlations of spatial density are strong and nearest neighbouring distances range from 1101 to 9462 m. Use time and energy use ratios are 11.21% and 3.56%. The average carbon intensity is 4.44 gCO2eq/MJ. Finally, the indicators are used to assess the impact of relevant public policies on the EV charging infrastructure use and roll-out.


2014 ◽  
Vol 3 (2) ◽  
pp. 132-152 ◽  
Author(s):  
Karin Regina de Casas Castro Marins

Purpose – Energy use in urban areas has turned a subject of local and worldwide interest over the last few years, especially emphasized by the correlated greenhouse gases emissions. The purpose of this paper is to analyse the overall energy efficiency potential and emissions resulting from integrated solutions in urban energy planning, in the scale of districts and neighbourhoods in Brazil. Design/methodology/approach – The approach is based on the description and the application of a method to analyse energy performance of urban areas and support their planning. It is a quantitative bottom-up method and involves urban morphology, urban mobility, buildings and energy supply systems. Procedures are applied to the case study of Agua Branca urban development area, located in Sao Paulo, Brazil. Findings – In the case of Agua Branca area, energy efficiency measures in buildings have shown to be very important mostly for the buildings economies themselves. For the area as a whole, strategies in promoting public transport are more effective in terms of energy efficiency and also to decrease pollutant emissions. Originality/value – Literature review has shown there is a lack of approaches and procedures able to support urban energy planning at a community scale. The bottom-up method presented in this paper integrates a plenty of disaggregated and multisectoral parameters at the same stage in urban planning and shows that is possible to identify the most promising actions by building overall performance indexes.


Author(s):  
Marialuce Stanganelli ◽  
Carlo Gerundo

This paper focuses on urban planning strategies to adapt cities to the increasing rising of temperatures during summer heat waves. The main target is to investigate which configuration and distribution pattern of green spaces could effectively improve natural cooling of urban environments. Although the benefit that green areas give to natural cooling is well known, this kind of studies has hardly been carried out, especially at an urban scale where it is crucial to define quantities and density of green areas to address open spaces design. To reach this goal, a methodology based on the interpretation of the statistical correlation among temperature, urban parameters and green areas configurational indicators was implemented and applied to the case study of the Municipality of Naples, performing all the analysis in a GIS. Results provide guidelines to improve natural cooling in urban areas adopting the most effective configuration and distribution of green areas within a densely-built context.


Buildings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 189 ◽  
Author(s):  
Javanroodi ◽  
M.Nik

Urbanization trends have changed the morphology of cities in the past decades. Complex urban areas with wide variations in built density, layout typology, and architectural form have resulted in more complicated microclimate conditions. Microclimate conditions affect the energy performance of buildings and bioclimatic design strategies as well as a high number of engineering applications. However, commercial energy simulation engines that utilize widely-available mesoscale weather data tend to underestimate these impacts. These weather files, which represent typical weather conditions at a location, are mostly based on long-term metrological observations and fail to consider extreme conditions in their calculation. This paper aims to evaluate the impacts of hourly microclimate data in typical and extreme climate conditions on the energy performance of an office building in two different urban areas. Results showed that the urban morphology can reduce the wind speed by 27% and amplify air temperature by more than 14%. Using microclimate data, the calculated outside surface temperature, operating temperature and total energy demand of buildings were notably different to those obtained using typical regional climate model (RCM)–climate data or available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 21%, respectively. The difference in the hourly peak demand during extreme weather conditions was around 13%. The impact of urban density and the final height of buildings on the results are discussed at the end of the paper.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 525 ◽  
Author(s):  
Edwin R. Grijalva ◽  
José María López Martínez

The emissions of CO2 gas caused by transport in urban areas are increasingly serious, and the public transport sector plays a vital role in society, especially when considering the increased demands for mobility. New energy technologies in urban mobility are being introduced, as evidenced by the electric vehicle. We evaluated the positive environmental effects in terms of CO2 emissions that would be produced by the replacement of conventional urban transport bus fleets by electric buses. The simulation of an electric urban bus conceptual model is presented as a case study. The model is validated using the speed and height profiles of the most representative route within the city of Madrid—the C1 line. We assumed that the vehicle fleet is charged using the electric grid at night, when energy demand is low, the cost of energy is low, and energy is produced with a large provision of renewable energy, principally wind power. For the results, we considered the percentage of fleet replacement and the Spanish electricity mix. The analysis shows that by gradually replacing the current fleet of buses by electric buses over 10 years (2020 to 2030), CO2 emissions would be reduced by up to 92.6% compared to 2018 levels.


Author(s):  
Mohsen Makki ◽  
Kolja Thestorf ◽  
Sabine Hilbert ◽  
Michael Thelemann ◽  
Lutz Makowsky

Abstract Purpose In urban areas, humans shape the surface, (re-)deposit natural or technogenic material, and thus become the dominant soil formation factor. The 2015 edition of the World Reference Base for Soil Resources (WRB) describes anthropogenic urban soils as Anthrosols or Technosols, but the methodological approaches and classification criteria of national soil classification systems are rather inconsistent. Stringent criteria for describing and mapping anthropogenic soils in urban areas and their application are still lacking, although more than half (53%) of the urban soils in Berlin are built-up by or contain anthropogenic material. Materials and methods On behalf of the Berlin Senate Department for the Environment, Transport and Climate Protection and in close cooperation with the German Working Group for Urban Soils, a comprehensive guideline for soil description in the Berlin metropolitan area (BMA), with special regard to anthropogenic/technogenic parent material and anthropogenic soils, has been developed. Our approach includes all previous standard works for soil description and mapping and is based on studies that have been conducted in the BMA over the last five decades. Special emphasis was placed on the integration of our manual into the classification system of the German soil mapping guideline (KA5). Results and discussion The extension of existing data fields (e.g., the further subdivision of land use types) as well as the creation of new data fields (e.g., pH value) adapted to the requirements of urban soil mapping has been carried out. Additional technogenic materials that occur in urban environments have been added to the list of anthropogenic parent materials. Furthermore, we designed appendices that clearly characterize typical soil profiles of the BMA and depict technogenic materials, their physical and chemical characteristics, as well as their origin and distribution. Our approach will set new benchmarks for soil description and mapping in urban environments, which will improve the quality of urban soil research in the BMA. It is expected that our approach will provide baselines for urban soil mapping in other metropolitan areas. Conclusions Our guideline is a comprehensive manual for the description of urban soils within a national soil classification system. This mapping guideline will be the future standard work for soil surveys and soil mapping in the federal state of Berlin. Currently, representatives from federal and state authorities are reviewing our guideline, with a view to potentially integrating key components into the classification system of the forthcoming 6th edition of the German soil mapping guideline (KA6).


2020 ◽  
Vol 15 (3) ◽  
pp. 402-410
Author(s):  
Dinesh Kumar Shahi ◽  
Hom Bahadur Rijal ◽  
Masanori Shukuya

In the last decades, the household’s energy demand has increased significantly in various countries including Nepal. In the case ofNepal, 94% of energy use is in the domestic sector. There is a possibility of a huge increase in electricity production, but we are stillsuffering from load shedding due to the high electricity demand. Electricity use is an important factor for the quality of life anddevelopment of a nation. There is not a sufficient number of researches done about electricity consumption in different climaticregions of Nepal which are analyzed by the income level of residents. This study gives descriptive information on the household’senergy uses patterns and investigates the electricity use rate, using electrical appliances in households. This study also identifies themajor source of energy use and awareness of energy use. The data were collected from 442 households in three regions in the winterseason of 2018. Kalikot is a rural area, Chitwan is a semi-urban, and Kathmandu is an urban area. We have collected electricity bills,family income, and family size, electricity using appliances, expenditure for energy and energy use for heating/cooling, cooking, andlighting. The electricity was used only for lighting purposes in the rural area, but other electrical appliances were used in semi-urbanand urban areas. The amount of electricity use has not affected by household income level in the rural area, but it has affected in semi-urban and urban areas. The level of education affects the use of the LED significantly. This study would be helpful to know theelectricity use patterns which is useful for energy saving and energy management of the rural and urban areas of Nepal.


Author(s):  
E. Achbab ◽  
R. Lambarki ◽  
H. Rhinane ◽  
D. Saifaoui

Abstract. Nowadays, the use of solar energy in buildings, especially photovoltaic energy, has undergone a great evolution in the world, thanks to various technological advances and to incentive programs. Related to this topic, the solar cadaster is an important interactive tool to predict the solar potential in an urban environment. The main objective of this research work is to estimate the photovoltaic energy potential of roofs based on aerial photogrammetry and GIS processing. The location chosen for the study is the Maarif district located in the city of Casablanca in order to raise awareness of the public and decision makers to this energy potential through a geoportal that will be developed for this purpose. The tool proposed in this research work makes it possible to evaluate the solar irradiation on a part of the territory of Casablanca with a sufficiently satisfactory precision and reliability, this thanks to the precise reconstruction of the territory in 3D urban model called digital surface model (DSM) at 50 cm resolution by techniques known as photogrammetry which makes it possible to carry out measurements extracted from a stereoscopic pairs, by using the parallax and the correlation between the digital images taken from various points of view. The analysis was used on the basis of specific algorithms and several factors including geographical location, shade, tilt, orientation, roof accessibility and topography which are the main factors influencing the productivity of solar panels.


2019 ◽  
Vol 111 ◽  
pp. 03027
Author(s):  
Michele De Carli ◽  
Laura Carnieletto ◽  
Antonino Di Bella ◽  
Samantha Graci ◽  
Giuseppe Emmi ◽  
...  

Ground Source Heat Pumps (GSHP) are gaining interest for many applications and a very difficult task is to look at their affordability in urban environments with limited spaces. For this reason, the EU project GEO4CIVHIC has been funded. In order to set up different cases with different levels of retrofit and try to generalize results, the project focuses the activity on archetypes, i.e. buildings which may represent the usual type of building which may be found more frequently in urban environments around Europe. The analysis of the archetypes has been based on literature review and analysing the existing databases of buildings in Europe. The work allowed to determine a reference building for single family house and a building representing an apartment block for multi-users. In this latest case two types of possible uses have been examined: residential building and office building. In order to set up different levels of retrofit and cost-effective solutions, three different climates have been defined: warm climate, mild climate and cold climate. The climatic conditions do not only affect the energy demand of the building and the peak power needed for heating and cooling, but also determine different ways of buildings’ construction and define different levels of insulation. Last but not least, the buildings have been also subdivided into existing buildings, i.e. built up from 1960 to 2000 and historic buildings, i.e. buildings earlier than 1960. The paper presents the first step of the research which permitted to define the different archetypes, their dimensions and way they are constructed. Moreover, the different simulations allowed to define the energy needs of the buildings as well as the peak power for heating and cooling. This allows to create a matrix for the different levels of retrofit solutions which will be associated to related costs for a cost-benefit analysis to check the most achievable solutions.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4449
Author(s):  
Hans-Martin Neumann ◽  
Ali Hainoun ◽  
Romana Stollnberger ◽  
Ghazal Etminan ◽  
Volker Schaffler

This article investigates the potential of selected urban typologies in Vienna to reach the state of Positive Energy Districts (PED) by achieving a positive annual energy balance. It follows the EU initiative for implementing at least 100 PED in Europe by 2025. Four urban typologies have been assessed using the bottom-up energy modelling tool MAPED that enables a simplified energy demand-supply analysis at the district scale. Considering relevant urban typologies in different construction periods, the analysis focused on converting the allocated building stocks into PED by employing comprehensive thermal refurbishment and energy efficiency measures, electrification of end-uses and fuel switching, exploitation of local renewable energy potential, and flexible interaction with the regional energy system. The results reveal that a detached housing district can achieve a positive annual energy balance (for heat and power) of 110% due to the fact that there are sufficient surfaces (roofs, facades, open land) available for the production of local renewable energy, whereas the remaining typologies fail to achieve the criteria with an annual balance ranking between 61% and 97%, showing additional margins for improvement to meet the PED conditions. The presented concept offers a practical approach to investigate the PED suitability of urban typologies. It will help the Austrian Ministry for Climate Action and Environment to identify appropriate strategies for the refurbishment of existing urban areas towards the PED standard.


Sign in / Sign up

Export Citation Format

Share Document