Constraining the Eurasian biogenic boreal carbon-cycle with satellite-SIF

Author(s):  
Lena Schreiner ◽  
Katja Grossmann ◽  
André Butz ◽  
Sanam N. Vardag ◽  
Eva-Marie Schömann

<p>The Eurasian boreal ecosystem acts as a major terrestrial carbon sink in the northern hemisphere. Under changing climatic conditions, it is crucial to monitor biogenic carbon fluxes in this area. The Siberian in-situ CO<sub>2</sub> data are, however, sparse in spatial coverage and limit model-validation there. Satellite observations of CO<sub>2</sub> and Sun-Induced Fluorescence (SIF) can provide essential information to constrain the Eurasian boreal biogenic carbon-cycle and further, to improve carbon cycle inverse models.</p><p>In this study, we investigate the Eurasian boreal carbon cycle with satellite observations of the Orbiting Carbon Observatory 2 (OCO-2) and the Greenhouse gase Observing SATellite (GOSAT). We compare the observed carbon cycle dynamics to model data such as provided by CarbonTracker (CT2019, CT-NRT.v2020-1) and find differences in the ppm range. Various sensitivity studies with respect to region selection, sampling biases and model choices are used to consolidate the robustness of the detected pattern. Using SIF and FLUXCOM GPP data, we will show first attempts to attribute the model-measurement differences to uncertainties in biogenic carbon fluxes.</p>

2019 ◽  
Vol 19 (18) ◽  
pp. 12067-12082 ◽  
Author(s):  
Hengmao Wang ◽  
Fei Jiang ◽  
Jun Wang ◽  
Weimin Ju ◽  
Jing M. Chen

Abstract. In this study, both the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals produced by the NASA Atmospheric CO2 Observations from Space (ACOS) project (version b7.3) are assimilated within the GEOS-Chem 4D-Var assimilation framework to constrain the terrestrial ecosystem carbon flux during 1 October 2014 to 31 December 2015. One inversion for the comparison, using in situ CO2 observations, and another inversion as a benchmark for the simulated atmospheric CO2 distributions of the real inversions, using global atmospheric CO2 trends and referred to as the poor-man inversion, are also conducted. The estimated global and regional carbon fluxes for 2015 are shown and discussed. CO2 observations from surface flask sites and XCO2 retrievals from Total Carbon Column Observing Network (TCCON) sites are used to evaluate the simulated concentrations with the posterior carbon fluxes. Globally, the terrestrial ecosystem carbon sink (excluding biomass burning emissions) estimated from GOSAT data is stronger than that inferred from OCO-2 data, weaker than the in situ inversion and matches the poor-man inversion the best. Regionally, in most regions, the land sinks inferred from GOSAT data are also stronger than those from OCO-2 data, and in North America, Asia and Europe, the carbon sinks inferred from GOSAT inversion are comparable to those from in situ inversion. For the latitudinal distribution of land sinks, the satellite-based inversions suggest a smaller boreal and tropical sink but larger temperate sinks in both the Northern and Southern Hemisphere than the in situ inversion. However, OCO-2 and GOSAT generally do not agree on which continent contains the smaller or larger sinks. Evaluations using flask and TCCON observations and the comparisons with in situ and poor-man inversions suggest that only GOSAT and the in situ inversions perform better than a poor-man solution. GOSAT data can effectively improve the carbon flux estimates in the Northern Hemisphere, while OCO-2 data, with the specific version used in this study, show only slight improvement. The differences of inferred land fluxes between GOSAT and OCO-2 inversions in different regions are mainly related to the spatial coverage, the data amount and the biases of these two satellite XCO2 retrievals.


2021 ◽  
Vol 2 ◽  
Author(s):  
Eric C. D. Tan ◽  
Patrick Lamers

Circular economy concepts—including a circular bioeconomy—aim to transition the current, essentially linear, economic system to a more sustainable one. However, organizations and researchers currently define the circular economy concept differently, resulting in inconsistencies and difficulty in effectively implementing the framework. In this paper, we provide our perspective on the conceptual definitions of the circular economy, bioeconomy, and circular bioeconomy, outlining potential overlaps and differences and proposing a harmonized interpretation that stresses the importance of the carbon cycle. We conclude that the key goal of a circular economy is to slow, narrow, and close material resource loops, built on the foundation of renewable energy and non-toxic materials. Further, a sustainable bioeconomy goes beyond simply switching fossil resources with renewable, biological resources. It requires low-carbon energy inputs, sustainable supply chains, and promising disruptive conversion technologies for the sustainable transformation of renewable bioresources to high-value bio-based products, materials, and fuels. The bio-based circular carbon economy, in particular, stresses capturing atmospheric carbon via photosynthesis and exploiting this unique feature to the fullest extent possible. It sits at the intersection between the circular economy and the bioeconomy concept, resulting in a framework that focuses on closing the carbon cycle and stressing the opportunity to create an additional carbon sink capability in the technosphere by utilizing biogenic carbon for products and materials that are circulated in same or improved use cycles. Lastly, a sustainable circular bioeconomy transition will necessitate a set of consistent metrics that fit all products and industries.


2018 ◽  
Author(s):  
Hengmao Wang ◽  
Fei Jiang ◽  
Jun Wang ◽  
Weimin Ju ◽  
Jing M. Chen

Abstract. In this study, both the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory 2 (OCO-2) XCO2 retrievals are assimilated within the GEOS-Chem 4D-Var assimilation framework to constrain the terrestrial ecosystem carbon flux during Jul 1, 2014 to Dec 31, 2015. The inverted global and regional carbon fluxes during Jan 1 to Dec 31, 2015 are shown and discussed. Surface CO2 mixing ratios from 47 surface flask sites and XCO2 measurements from 13 TCCON sites are used to evaluate the simulated concentrations with the posteriori carbon fluxes. The results show that globally, the terrestrial ecosystem carbon sink (excluding biomass burning emissions) estimated from GOSAT data is stronger than that inferred from OCO-2 data, and the annual atmospheric CO2 growth rate estimated from GOSAT data is more consistent with the estimate of GCP 2017. Regionally, in most regions, the land sinks inferred from GOSAT data are also stronger than those from OCO-2 data. Compared with the prior fluxes, the carbon fluxes in northern temperate regions change most, followed by tropical and southern temperate regions, and the smallest changes occur in boreal regions. Basically, in temperate regions, the inferred land sinks are significantly increased, while those in tropical regions are decreased. The different changes in different regions are mainly related to the spatial coverage and the amount of XCO2 data in these regions. Compared with CT2016, the inferred carbon sinks are comparable in most temperate regions, but much weaker in boreal and tropical regions. Evaluations using flask and TCCON observations suggest that GOSAT and OCO-2 data, can effectively improve the carbon flux estimates in the northern hemisphere, while in the southern hemisphere the optimized carbon sinks may be overestimated, especially for GOSAT data.


2020 ◽  
Vol 3 (1) ◽  
pp. 43
Author(s):  
Subhajit Bandopadhyay ◽  
Dany A. Cotrina Sánchez

An unprecedented number of wildfire events during 2019 throughout the Brazilian Amazon caught global attention, due to their massive extent and the associated loss in the Amazonian forest—an ecosystem on which the whole world depends. Such devastating wildfires in the Amazon has strongly hampered the global carbon cycle and significantly reduced forest productivity. In this study, we have quantified such loss of forest productivity in terms of gross primary productivity (GPP), applying a comparative approach using Google Earth Engine. A total of 12 wildfire spots have been identified based on the fire’s extension over the Brazilian Amazon, and we quantified the loss in productivity between 2018 and 2019. The Moderate Resolution Imaging Spectroradiometer (MODIS) GPP and MODIS burned area satellite imageries, with a revisit time of 8 days and 30 days, respectively, have been used for this study. We have observed that compared to 2018, the number of wildfire events increased during 2019. But such wildfire events did not hamper the natural annual trend of GPP of the Amazonian ecosystem. However, a significant drop in forest productivity in terms of GPP has been observed. Among all 11 observational sites were recorded with GPP loss, ranging from −18.88 gC m−2 yr−1 to −120.11 gC m−2 yr−1, except site number 3. Such drastic loss in GPP indicates that during 2019 fire events, all of these sites acted as carbon sources rather than carbon sink sites, which may hamper the global carbon cycle and terrestrial CO2 fluxes. Therefore, it is assumed that these findings will also fit for the other Amazonian wildfire sites, as well as for the tropical forest ecosystem as a whole. We hope this study will provide a significant contribution to global carbon cycle research, terrestrial ecosystem studies, sustainable forest management, and climate change in contemporary environmental sciences.


2015 ◽  
Vol 12 (9) ◽  
pp. 2791-2808 ◽  
Author(s):  
J. Tang ◽  
P. A. Miller ◽  
A. Persson ◽  
D. Olefeldt ◽  
P. Pilesjö ◽  
...  

Abstract. A large amount of organic carbon is stored in high-latitude soils. A substantial proportion of this carbon stock is vulnerable and may decompose rapidly due to temperature increases that are already greater than the global average. It is therefore crucial to quantify and understand carbon exchange between the atmosphere and subarctic/arctic ecosystems. In this paper, we combine an Arctic-enabled version of the process-based dynamic ecosystem model, LPJ-GUESS (version LPJG-WHyMe-TFM) with comprehensive observations of terrestrial and aquatic carbon fluxes to simulate long-term carbon exchange in a subarctic catchment at 50 m resolution. Integrating the observed carbon fluxes from aquatic systems with the modeled terrestrial carbon fluxes across the whole catchment, we estimate that the area is a carbon sink at present and will become an even stronger carbon sink by 2080, which is mainly a result of a projected densification of birch forest and its encroachment into tundra heath. However, the magnitudes of the modeled sinks are very dependent on future atmospheric CO2 concentrations. Furthermore, comparisons of global warming potentials between two simulations with and without CO2 increase since 1960 reveal that the increased methane emission from the peatland could double the warming effects of the whole catchment by 2080 in the absence of CO2 fertilization of the vegetation. This is the first process-based model study of the temporal evolution of a catchment-level carbon budget at high spatial resolution, including both terrestrial and aquatic carbon. Though this study also highlights some limitations in modeling subarctic ecosystem responses to climate change, such as aquatic system flux dynamics, nutrient limitation, herbivory and other disturbances, and peatland expansion, our study provides one process-based approach to resolve the complexity of carbon cycling in subarctic ecosystems while simultaneously pointing out the key model developments for capturing complex subarctic processes.


2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


2013 ◽  
Vol 9 (3) ◽  
pp. 1111-1140 ◽  
Author(s):  
M. Eby ◽  
A. J. Weaver ◽  
K. Alexander ◽  
K. Zickfeld ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.


2017 ◽  
Vol 14 (9) ◽  
pp. 2343-2357 ◽  
Author(s):  
Thomas Kaminski ◽  
Pierre-Philippe Mathieu

Abstract. The vehicles that fly the satellite into a model of the Earth system are observation operators. They provide the link between the quantities simulated by the model and the quantities observed from space, either directly (spectral radiance) or indirectly estimated through a retrieval scheme (biogeophysical variables). By doing so, observation operators enable modellers to properly compare, evaluate, and constrain their models with the model analogue of the satellite observations. This paper provides the formalism and a few examples of how observation operators can be used in combination with data assimilation techniques to better ingest satellite products in a manner consistent with the dynamics of the Earth system expressed by models. It describes commonalities and potential synergies between assimilation and classical retrievals. This paper explains how the combination of observation operators and their derivatives (linearizations) form powerful research tools. It introduces a technique called automatic differentiation that greatly simplifies both the development and the maintenance of code for the evaluation of derivatives. Throughout this paper, a special focus lies on applications to the carbon cycle.


2019 ◽  
pp. 87
Author(s):  
Sergio Sánchez-Ruiz

<p>The main goal of this thesis is the establishment of a framework to analyze the forest ecosystems in peninsular Spain in terms of their role in the carbon cycle. In particular, the carbon fluxes that they exchange with atmosphere are modeled to evaluate their potential as carbon sinks and biomass reservoirs. The assessment of gross and net carbon fluxes is performed at 1-km spatial scale and on a daily basis using two different ecosystem models, Monteith and BIOME-BGC, respectively. These models are driven by a combination of satellite and ground data, part of the latter being also employed as a complementary data source and in the validation process.</p>


2021 ◽  
Author(s):  
Zhe Jin ◽  
Xiangjun Tian ◽  
Rui Han ◽  
Yu Fu ◽  
Xin Li ◽  
...  

Abstract. Accurate assessment of the various sources and sinks of carbon dioxide (CO2), especially terrestrial ecosystem and ocean fluxes with high uncertainties, is important for understanding of the global carbon cycle, supporting the formulation of climate policies, and projecting future climate change. Satellite retrievals of the column-averaged dry air mole fractions of CO2 (XCO2) are being widely used to improve carbon flux estimation due to their broad spatial coverage. However, there is no consensus on the robust estimates of regional fluxes. In this study, we present a global and regional resolved terrestrial ecosystem carbon flux (NEE) and ocean carbon flux dataset for 2015–2019. The dataset was generated using the Tan-Tracker inversion system by assimilating Observing Carbon Observatory 2 (OCO-2) column CO2 retrievals. The posterior NEE and ocean carbon fluxes were comprehensively validated by comparing posterior simulated CO2 concentrations with OCO-2 independent retrievals and Total Carbon Column Observing Network (TCCON) measurements. The validation showed that posterior carbon fluxes significantly improved the modelling of atmospheric CO2 concentrations, with global mean biases of 0.33 ppm against OCO-2 retrievals and 0.12 ppm against TCCON measurements. We described the characteristics of the dataset at global, regional, and Tibetan Plateau scales in terms of the carbon budget, annual and seasonal variations, and spatial distribution. The posterior 5-year annual mean global atmospheric CO2 growth rate was 5.35 PgC yr−1, which was within the uncertainty of the Global Carbon Budget 2020 estimate (5.49 PgC yr−1). The posterior annual mean NEE and ocean carbon fluxes were −4.07 and −3.33 PgC yr−1, respectively. Regional fluxes were analysed based on TransCom partitioning. All 11 land regions acted as carbon sinks, except for Tropical South America, which was almost neutral. The strongest carbon sinks were located in Boreal Asia, followed by Temperate Asia and North Africa. The entire Tibetan Plateau ecosystem was estimated as a carbon sink, taking up −49.52 TgC yr−1 on average, with the strongest sink occurring in eastern alpine meadows. These results indicate that our dataset captures surface carbon fluxes well and provides insight into the global carbon cycle. The dataset can be accessed at https://doi.org/10.11888/Meteoro.tpdc.271317 (Jin et al., 2021).


Sign in / Sign up

Export Citation Format

Share Document