The spatiotemporal pattern of the Bond 4 event (5.2 ka) : a global data-based review

Author(s):  
Bassem Jalali ◽  
Marie-Alexandrine Sicre

<p>The Bond 4 event starting at 7000 yr BP and culminating around 5200 yr BP corresponds to the largest (in magnitude and duration) invasion of drifting ice across the subpolar North Atlantic during the Holocene (Bond et al., 2001). While several studies have focused on other events of the Holocene, such as the 8.2 ka, the 4.2 ka and the Little Ice Age, little is known about the mid-Holocene 5.2 ka event. Here we present a global compilation of carefully selected high-resolution time series of sea surface temperature (SST; N=58) and humidity/precipitation (N=35) to characterize in space and time the 5.2 ka event pattern.</p><p>The SST records show the occurrence of cold conditions in the North Atlantic, western Mediterranean as well as in the western Pacific Ocean. However, they indicate warming in the high latitude North Atlantic, the southeastern Atlantic, the eastern Mediterranean and the Arabian and Red seas. Humidity/precipitation data (mainly based on oxygen  isotope records in speleothems) indicate dry conditions in the northern hemisphere subtropical and mid latitude regions of all continents. Based on these data and others from marine and lacustrine records in tropical regions, we suggest a possible weakening of monsoon systems, i.e. in Africa, North America, southwest Asia as well as East Asia. Precipitation reduced as well in most regions of the Mediterranean (i.e. except Iberian Peninsula). All together these data indicate severe climate conditions during the 5.2 ka event.</p><p>Based on the recent compilation of sortable silt from the high latitude North Atlantic of McCave and Andrews (2019), the 5.2 ka event coincides with a decrease of the main Shallow and bottom ocean flows (i.e. North Iceland Irminger Current, East Greenland Current, Iceland-Scotland overflow) probably reflecting a weakening of the North Atlantic Deep Water formation. This event also corresponds to the occurrence of several solar minima as well as several tropical volcanic mega-eruptions that could have triggered a global colder and drier climate (Steinhilber et al., 2012; Kobashi et al., 2017). </p>

2010 ◽  
Vol 6 (5) ◽  
pp. 1655-1683 ◽  
Author(s):  
C. Martín-Puertas ◽  
F. Jiménez-Espejo ◽  
F. Martínez-Ruiz ◽  
V. Nieto-Moreno ◽  
M. Rodrigo ◽  
...  

Abstract. A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G) and terrestrial (Zoñar Lake, Andalucia, Spain) paleoclimate information using geochemical proxies provides a high resolution reconstruction of climate variability and human influence in southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. Drier stages occurred prior to 2.7 cal ka BP, well-correlated with the global aridity crisis of the third-millennium BC, and during the Medieval Warm Period (1.4–0.7 cal ka BP). Wetter conditions prevailed from 2.7 to 1.4 cal ka BP and after the Medieval Warm Period and the onset of the Little Ice Age. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity that the period before. Additionally, Pb anomalies in sediments at the end of Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The evolution of the climate in the study area during the Late Holocene confirms the see-saw pattern previously shown between eastern and western Mediterranean regions and suggests a higher influence of the North Atlantic dynamics in the western Mediterranean.


2011 ◽  
Vol 7 (1) ◽  
pp. 635-675 ◽  
Author(s):  
V. Nieto-Moreno ◽  
F. Martínez-Ruiz ◽  
S. Giralt ◽  
F. Jiménez-Espejo ◽  
D. Gallego-Torres ◽  
...  

Abstract. Climate variability in the western Mediterranean is reconstructed for the last 4000 yr using marine sediments recovered in the west Algerian-Balearic basin, near the Alboran basin. Fluctuations in chemical and mineralogical sediment composition as well as grain size distribution are linked to fluvial-eolian oscillations, changes in redox conditions and paleocurrent intensity. Multivariate analyses allowed us to characterize three main groups of geochemical and mineralogical proxies determining the sedimentary record of this region. These three statistical groups were applied to reconstruct paleoclimate conditions at high resolution during the Late Holocene. An increase in fluvial-derived elements (Rb/Al, Ba/Al, REE/Al, Si/Al, Ti/Al, Mg/Al and K/Al ratios), finer grain size, slower flows and oxygen-poor bottom waters – as suggested by sortable silt (10–63 μm), clays (< 2 μm) and redox-sensitive elements (V/Al, Cr/Al, Ni/Al and Zn/Al ratios) – depict the Roman Humid Period (RHP) and the Little Ice Age (LIA), while drier environmental conditions are recognized during the Late Bronze Age-Iron Age (LBA-IA) and the Medieval Warm Period (MWP). Although no Ba excess was registered, other paleoproductivity indicators (total organic carbon content, Br/Al ratio, and organometallic ligands such as U and Cu) display the highest values during the RHP, this period exhibiting by far the most intense productivity of the last 4000 yr. These marine sediments evidence oscillations that support the link of the westernmost Mediterranean climate with the North Atlantic coupled ocean-atmosphere climatic system, pointing to solar irradiance and the North Atlantic Oscillation (NAO) variability as the main driving mechanisms behind natural climate variability over decadal to centennial time-scales for the last 4000 yr.


2012 ◽  
Vol 77 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Pierre Sabatier ◽  
Laurent Dezileau ◽  
Christophe Colin ◽  
Louis Briqueu ◽  
Frédéric Bouchette ◽  
...  

A high-resolution record of paleostorm events along the French Mediterranean coast over the past 7000 years was established from a lagoonal sediment core in the Gulf of Lions. Integrating grain size, faunal analysis, clay mineralogy and geochemistry data with a chronology derived from radiocarbon dating, we recorded seven periods of increased storm activity at 6300–6100, 5650–5400, 4400–4050, 3650–3200, 2800–2600, 1950–1400 and 400–50 cal yr BP (in the Little Ice Age). In contrast, our results show that the Medieval Climate Anomaly (1150–650 cal yr BP) was characterised by low storm activity.The evidence for high storm activity in the NW Mediterranean Sea is in agreement with the changes in coastal hydrodynamics observed over the Eastern North Atlantic and seems to correspond to Holocene cooling in the North Atlantic. Periods of low SSTs there may have led to a stronger meridional temperature gradient and a southward migration of the westerlies. We hypothesise that the increase in storm activity during Holocene cold events over the North Atlantic and Mediterranean regions was probably due to an increase in the thermal gradient that led to an enhanced lower tropospheric baroclinicity over a large Central Atlantic-European domain.


2014 ◽  
Vol 41 (12) ◽  
pp. 4300-4307 ◽  
Author(s):  
Paige E. Newby ◽  
Bryan N. Shuman ◽  
Jeffrey P. Donnelly ◽  
Kristopher B. Karnauskas ◽  
Jeremiah Marsicek

2012 ◽  
Vol 8 (3) ◽  
pp. 1687-1720 ◽  
Author(s):  
J. Fohlmeister ◽  
A. Schröder-Ritzrau ◽  
D. Scholz ◽  
C. Spötl ◽  
D. F. C. Riechelmann ◽  
...  

Abstract. Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a new record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, Western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high resolution records of δ18O, δ13C values and Mg/Ca ratios. We attribute changes in the Mg/Ca ratio to variations in the meteoric precipitation. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 9 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 to 0.2 ka. The proxy signals in our stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the Thermohaline Circulation.


2021 ◽  
Author(s):  
Nadine Goris ◽  
Jerry Tjiputra ◽  
Are Ohlsen ◽  
Jörg Schwinger ◽  
Siv Lauvset ◽  
...  

&lt;p&gt;As one of the major carbon sinks in the global ocean, the North Atlantic is a key player in mediating and ameliorating the ongoing global warming. Projections of the North Atlantic carbon sink in a high-CO&lt;sub&gt;2&lt;/sub&gt; future vary greatly among models, with some showing that a slowdown in carbon uptake has already begun and others predicting that this slowdown will not occur until nearly 2100.&lt;/p&gt;&lt;p&gt;Discrepancies among models largely originate because of differences in the efficiency of the high-latitude transport of carbon from the surface to the deep ocean. This transport occurs through biological production, deep convection and subsequent transport via the deep western boundary current. For an ensemble of 11 CMIP5-models, we studied the efficiency of this transport and identified two indicators of contemporary model behavior that are highly correlated with a model&amp;#180;s projected future carbon-uptake. The first indicator is the high latitude summer pCO&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;sea&lt;/sup&gt;-anomaly of a model, which is tightly linked to winter mixing and nutrient supply, but also to deep convection. The second indicator is the fraction of the anthropogenic carbon-inventory stored below 1000-m depth, indicating how efficient carbon is transported into the deep ocean. By comparing to the observational database, these indicators allow us to better constrain the model ensemble, and demonstrate that the models with more efficient surface to deep transport are best aligned with current observations. These models also show the largest future North Atlantic carbon uptake, which we then conclude is the more plausible future evolution. We further study if the high correlations between our contemporary indicators and a model&amp;#180;s future North Atlantic carbon uptake is also upheld for the next model generation, CMIP6. We hypothesize that this is the case and that our indicators can not only help us to constrain the CMIP6 model ensemble but also inform us about progress made between CMIP5 and CMIP6 in terms of North Atlantic carbon uptake, winter mixing, nutrient supply, deep convection and transport of carbon into the deep ocean.&lt;/p&gt;


2021 ◽  
Author(s):  
Johannes Schmidt ◽  
Cathleen Kertscher ◽  
Markus Reichert ◽  
Helen Ballasus ◽  
Birgit Schneider ◽  
...  

&lt;p&gt;The Western Mediterranean region including the North African desert margin is considered one of the most sensitive areas to future climate changes. In order to refine long-term scenarios for hydrological and environmental responses to future climate changes in this region, it is important to improve our knowledge about past environmental responses to climatic variability at centennial to millennial timescales. During the last two decades, the recovery and compilation of Holocene records from the subtropical North Atlantic and the Mediterranean Sea have improved our knowledge about millennial-scale variability of the Western Mediterranean palaeoclimate. The variabilities appear to affect regional precipitation patterns and environmental systems in the Western Mediterranean, but the timescales, magnitudes and forcing mechanisms remain poorly known. To compare the changes in Holocene climate variability and geomorphological processes across temporal scales, we analysed a 19.63-m long sediment record from Lake Sidi Ali (33&amp;#176;03&amp;#8217; N, 5&amp;#176;00&amp;#8217; W, 2080 m a.s.l.) in the sub-humid Middle Atlas that spans the last 12,000 years (23 pollen-based radiocarbon dates accompanied with &lt;sup&gt;210&lt;/sup&gt;Pb results). We use calibrated XRF core scanning records with an annual to sub-decadal resolution to disentangle the complex interplay between climate changes and environmental dynamics during the Holocene. Data exploration techniques and time series analysis (Redfit, Wavelet) revealed long-term changes in lake behaviour. Three main proxy groups were identified (temperature proxies: 2ky, 1ky and 0.7ky cycles; sediment dynamic proxies: 3.5ky, 1.5ky cycles; hydrological proxies: 1.5ky, 1.2ky, 0.17ky cycles). For example, redox sensitive elements Fe and Mn show 1ky cycles and higher values in the Early Holocene and 1.5ky cycles and lower values in the Mid- to Late Holocene. All groups show specific periodicities throughout the Holocene, demonstrating their particular climatic and geomorphological dependencies. Furthermore, we discuss these periodicities relating to global and hemispheric drivers, such as the North Atlantic Oscillation (NAO), El-Ni&amp;#241;o Southern Oscillation (ENSO), Innertropical Convergence Zone variability (ITCZ) and North Atlantic cold relapses (Bond events).&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document