Overcoming conflicting notions of climate forecasts reliability and skill in the agricultural sector: lessons from the MED-GOLD project

Author(s):  
Sandro Calmanti ◽  
Marta Bruno Soares ◽  
Alessandro Dell’Aquila ◽  
Luigi Ponti ◽  
Matteo De Felice ◽  
...  

<p>During the project MED-GOLD, whose aim is to co-develop pilot climate services for three staple Mediterranean agri-food systems: grape, olive and durum wheat, key challenges emerged in the process of identifying useful climate indicators and actionable definitions of the reliability of climate information. To address such conflicting notion of the reliability of climate information, a participatory workshop was organised with providers (mainly climate scientists) and users of climate data and information (representatives from agri-food companies but also providers of agromet services for farmers) to facilitate an open discussion and find ways of moving forward methodologically and practically towards the development of prototype services. We found that the scientists and users had very different conceptions and interpretations of terms such as skill and reliability of climate information. Furthermore, such disparate understandings created a level of friction between what the scientists understood as scientifically robust and credible climate information and what the users required in terms of saliency of the climate information developed in order to effectively support their decisions. Through an iterative and open discussion, scientists and users agreed the decision making landscape and on a notion of reliability of climate predictions connected to the type of decisions that climate information would support. We will describes the process of developing a common understanding on working definitions of the reliability of climate predictions in the MED-GOLD project and, provide a practical example of the application of this definition to a real case study focused on durum wheat cultivation in Italy.</p>

2021 ◽  
Author(s):  
Tufa Dinku

<p>Despite recent and mostly global efforts to promote climate services in developing countries, Africa still faces significant limitations in its institutional infrastructure and capacity to develop, access, and use decision-relevant climate data and information products at multiple levels of governance. The Enhancing National Climate Services (ENACTS) initiative, led by Columbia University’s International Research Institute for Climate and Society, strives to overcome these challenges by targeting the way climate-sensitive decisions are made at the local, regional, and national levels. The ENACTS approach is executed by working directly with the National Meteorological and Hydrological Services (NMHS) to build capacity for improving the availability, access, and use of quality climate data and information products at relevant spatial and temporal scales. The ENACTS approach has shown to be an effective means to transform decision-making surrounding vulnerabilities and risks at both national and local scales in over a dozen countries at the national level as well as at regional level East and West Africa. In the ENACTS approach, challenges to the availability of climate data are alleviated by combining quality-controlled station observations with global proxies to generate spatially and temporally complete climate datasets. Access to climate information is enhanced by developing an online mapping service that provides a user-friendly interface for analyzing and visualizing climate information products. Use of the generated climate data and the derived information products are promoted through raising awareness in relevant communities, training users, and co-production processes.</p>


2014 ◽  
Vol 11 (1) ◽  
pp. 25-33 ◽  
Author(s):  
A. Obregón ◽  
H. Nitsche ◽  
M. Körber ◽  
A. Kreis ◽  
P. Bissolli ◽  
...  

Abstract. The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).


2022 ◽  
Vol 3 ◽  
Author(s):  
Tufa Dinku ◽  
Rija Faniriantsoa ◽  
Remi Cousin ◽  
Igor Khomyakov ◽  
Audrey Vadillo ◽  
...  

Despite recent and mostly global efforts to promote climate services in developing countries, Africa still faces significant limitations in its institutional infrastructure and capacity to develop, access, and use decision-relevant climate data and information products at multiple levels of governance. The Enhancing National Climate Services (ENACTS) initiative, led by Columbia University's International Research Institute for Climate and Society (IRI), strives to overcome these challenges by co-developing tailored, actionable, and decision-relevant climate information with and for a wide variety of users at the local, regional, and national levels. This is accomplished through an approach emphasizing direct engagement with the National Meteorological and Hydrological Services (NMHS) and users of their products, and investments in both technological and human capacities for improving the availability, access, and use of quality climate data and information products at decision-relevant spatial and temporal scales. In doing so, the ENACTS approach has been shown to be an effective means of transforming decision-making surrounding vulnerabilities and risks at multiple scales, through implementation in over a dozen countries at national level as well as at the regional levels in both East and West Africa. Through the ENACTS approach, challenges to availability of climate data are alleviated by combining quality-controlled station observations with global proxies to generate spatially and temporally complete climate datasets. Access to climate information is enhanced by developing an online mapping service that provides a user-friendly interface for analyzing and visualizing climate information products. Use of the generated climate data and the derived information products is promoted through raising awareness in relevant communities, training users, and co-production processes.


2019 ◽  
Vol 100 (8) ◽  
pp. 1419-1428 ◽  
Author(s):  
Erik W. Kolstad ◽  
Oda N. Sofienlund ◽  
Hanna Kvamsås ◽  
Mathew A. Stiller-Reeve ◽  
Simon Neby ◽  
...  

AbstractClimate change yields both challenges and opportunities. In both cases, costly adaptations and transformations are necessary and desirable, and these must be based on realistic and relevant climate information. However, it is often difficult for climate scientists to communicate this information to decision-makers and stakeholders, and it can be equally difficult for such actors to interpret and put the information to use. In this essay, we discuss experiences and present recommendations for scientists producing climate services. The basis is our work in several climate service projects. One of them aimed to provide local-scale climate data for municipalities in western Norway and to explore how the data were interpreted and implemented. The project was first based solely on climate science expertise, and the participants did not have sufficient competence on coproduction and knowledge about the regulatory and political landscape in which municipalities operate. Initially, we also subscribed to an outdated idea of climate services, where knowledge providers (climate scientists) “deliver” their information to knowledge users (e.g., municipal planners). Increasingly, as stressed in the literature on coproduction of knowledge, we learned that climate service should be an iterative process where actionable information is coproduced through two-way dialogue. On the basis of these and other lessons learned the hard way, we provide a set of concrete recommendations on how to embed the idea of coproduction from the preproposal stage to beyond the end of climate service projects.


2021 ◽  
Author(s):  
Francesca Larosa ◽  
Marta Bruno-Soares

<p>Knowledge networks are collections of individuals who work together across organizational, spatial and disciplinary boundaries to develop and share a body of knowledge. Climate services are tools and applications that help support decision-making by transforming climate data into information tailored to specific users. They call for co-development practices to facilitate successful collaboration between different stakeholders. Knowledge networks for climate services are intermediaries that can facilitate the interaction between upstream (providers) and downstream (users) actors operating at various scales (local, national, regional and supranational). Such knowledge networks can therefore assist decision-making processes of a wide set of users by creating networking opportunities and disseminating usable climate information. The aim of this work is to frame and assess the efficiency of knowledge networks for climate services in promoting innovation and facilitate its diffusion. We used semi-structured interviews with knowledge networks managers to collect information about their purpose, process and audience.  We then assess the efficiency of knowledge networks by performing content analysis of interviews with knowledge network managers and by checking for the existence of inconsistencies or gaps with the initial objectives. We find that knowledge networks for climate services pursue four objectives: coordination, innovation promotion, science-policy interface and support to members. We also find that knowledge networks are well-recognised players in disseminating knowledge and opportunities to climate services practitioners and policy makers. However, we observe a lack of adequate tools to monitor the activities of different members. On the communication side, knowledge networks for climate services mostly interact with developers of climate services but face challenges in sharing members’ activities with users. Our work fills a significant knowledge gap and helps providing new tools of performance assessment in absence of a clearly defined methodology. The identification of bottlenecks and under-performing mechanisms in the climate information services sphere allows the elaboration of strategies to improve the status quo and facilitates the diffusion of innovations such as climate services.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 4721
Author(s):  
Gloriose Nsengiyumva ◽  
Tufa Dinku ◽  
Remi Cousin ◽  
Igor Khomyakov ◽  
Audrey Vadillo ◽  
...  

Making climate-sensitive economic sectors resilient to climate trends and shocks, through adaptation to climate change and managing uncertainties associated with climate extremes, will require effective use of climate information to help practitioners make climate-informed decisions. The provision of weather and climate information will depend on the availability of climate data and its presentation in formats that are useful for decision making at different levels. However, in many places around the world, including most African countries, the collection of climate data has been seriously inadequate, and even when available, poorly accessible. On the other hand, the availability of climate data by itself may not lead to the uptake and use of such data. These data must be presented in user-friendly formats addressing specific climate information needs in order to be used for decision-making by governments, as well as the public and private sectors. The generated information should also be easily accessible. The Enhancing National Climate Services (ENACTS) initiative, led by Columbia University’s International Research Institute for Climate and Society (IRI), has been making efforts to overcome these challenges by supporting countries to improve the available climate data, as well as access to and use of climate information products at relevant spatial and temporal scales. Challenges to the availability of climate data are alleviated by combining data from the national weather observation network with remote sensing and other global proxies to generate spatially and temporally complete climate datasets. Access to climate information products is enhanced by developing an online mapping service that provides a user-friendly interface for analyzing and visualizing climate information products such as maps and graphs.


2021 ◽  
Author(s):  
Alessandro Dell'Aquila ◽  
Sandro Calmanti ◽  
Luigi Ponti ◽  
Marta Bruno Soares ◽  
Massimiliano Pasqui ◽  
...  

<p>The H2020 MED-GOLD Living Lab ”Turning climate information into value for traditional Mediterranean agri-food systems” was implemented as a solution to deal with the coronavirus pandemic and the resulting travel restrictions. Originally planned as a summer school in Cagliari in Italy, this training event was held online over five weeks between May and June 2020. This work describes the main features of the MED-GOLD Living Lab 2020, including the necessary steps and the strategy adopted to turn the originally planned physical summer school into an online event. </p><p>The MED-GOLD Living Lab 2020 was dedicated to early career scientists and professionals in the areas of climate science, agriculture, economy, social sciences and communication. The Living Lab has been conducted as an on-line event for five weeks, from May 25 to June 25, with weekly interactive webinars by speakers across different disciplines and on-line working groups with multidisciplinary teams, supported by scientists from the MED-GOLD experts as mentors.</p><p>Participants have been challenged by real users of climate information to develop prototype climate services for the agri-food sector, building on the knowledge and skills shared during the event.</p><p>Early career scientists and professionals with a wide range of individual profiles have been encouraged to apply and join the multidisciplinary teams: climate scientists, agronomists, software developers (R, Python), economists, social scientists, communication and visual communication experts.</p><p>The purpose of the Living Lab was to demonstrate to the participants the MED-GOLD concepts and methodologies to develop climate services as well as become familiar with climate data and tools made available through the Copernicus Climate Data Store (CDS).</p><p>An online feedback form was distributed to participants in the last day of the living lab. Overall the feedback received was very positive with all respondents stating that they would recommend this living lab to others. The majority of respondents were positive about the overall content, design and delivery of the living lab. </p><p>However, the interactive aspects of the Living Lab could be further improved not only to ensure that the interactions between participants (e.g. to pursue their work group are effective but also in terms of ensuring that the time at which the living lab runs fits with participants’ own commitments. Potential ways of overcoming these could be to e.g. allocate a specific slot during the living lab programme for group work as well as to identify specific dates/time slots to run future living labs together with participants.</p><p>The majority enjoyed the opportunity to engage with real-problems and stakeholders, working in multidisciplinary teams and engaging with experts in climate services.</p><p>Taking into account the circumstances of the COVID-19 emergency and based on the feedback by the participants, the Living lab was a  successful experiment that could be replicated and further enhanced for the second training event, MED-GOLD Living Lab 2021 planned for late spring 2021.</p>


2021 ◽  
Author(s):  
Francesca Larosa ◽  
Marta Bruno-Soares

<p>Knowledge networks are collections of individuals and teams who work together across organizational, spatial and disciplinary boundaries to invent and share a body of knowledge. Climate services are tools and application that support decision-making by transforming raw climate data into tailored information. They call for co-development practices in place and for successful collaboration between different stakeholders. Knowledge networks for climate services are intermediaries that facilitate the interaction between upstream (<em>providers</em>) and downstream (<em>user</em>) actors operating at various scales (local, national, regional and supranational). They assist the decision-making process of a wide set of users by creating windows of opportunity and by delivering usable climate information. The aim of this work is to frame and assess the efficiency of knowledge networks for climate services in promoting innovation and facilitate its diffusion. First, we characterize knowledge networks learning from insights of a multidisciplinary literature. Second, we analyse the purpose, the process and the audience of each knowledge network for climate services by screening their programmatic documents. We then assess the efficiency of knowledge networks by performing content analysis of interviews with knowledge network managers and by checking for the existence of inconsistencies or gaps with the initial objectives. We find knowledge networks for climate services pursue four objectives: coordination, innovation promotion, science-policy interface and support to members. We also find inadequate tools to monitor the members activities, but a strong positioning within the climate services domain. On the communication side, knowledge networks for climate services mostly interact with developers of climate services but they face challenges in sharing the members’ activities with users. Our work fills a significant knowledge gap and helps providing new tools of performance assessment in absence of a clearly defined methodology. The identification of bottlenecks and under-performing mechanisms in the climate information services sphere allows the elaboration of strategies to improve the status quo and facilitates the diffusion of these innovations.</p>


2021 ◽  
Author(s):  
Xianfu Lu

Abstract With the need for action on adaptation gaining growing attention in public discourse on climate change, the use of climate data from observations and climate model simulations has been rapidly expanding. This includes areas such as designing climate-resilient critical infrastructure and valuating assets of financial institutions. How climate information is applied in these emerging areas of adaptation practice has significant practical, economic and financial implications. Using a set of case studies, this paper illustrates the current practices of how climate information is applied to inform climate-resilient infrastructure development in multilateral climate funds and development banks, and to assess physical climate risks by financial institutions. Two main challenges are identified: a disconnect between what climate data is needed to inform certain decisions and analyses and what is currently available, and a lack of common standards and professional scrutiny around the provision of climate services. Opportunities to help address these challenges are highlighted for the providers and users of climate information.


Author(s):  
Luz Calvo ◽  
Isadora Christel ◽  
Marta Terrado ◽  
Fernando Cucchietti ◽  
Mario Pérez-Montoro

AbstractThe visual communication of climate information is one of the cornerstones of climate services. It often requires the translation of multidimensional data to visual channels by combining colors, distances, angles, and glyph sizes. However, visualizations including too many layers of complexity can hinder decision-making processes by limiting the cognitive capacity of users, therefore affecting their attention, recognition, and working memory. Methodologies grounded on the fields of user-centered design, user interaction and cognitive psychology, which are based on the needs of the users, have a lot to contribute to the climate data visualization field. Here, we apply these methodologies to the redesign of an existing climate service tool tailored to the wind energy sector. We quantify the effect of the redesign on the users’ experience performing typical daily tasks, using both quantitative and qualitative indicators that include response time, success ratios, eye-tracking measures, user perceived effort and comments among others. Changes in the visual encoding of uncertainty and the use of interactive elements in the redesigned tool reduced the users’ response time by half, significantly improved success ratios, and eased decision making by filtering non-relevant information. Our results show that the application of user-centered design, interaction, and cognitive aspects to the design of climate information visualizations reduces the cognitive load of users during tasks performance, thus improving user experience. These aspects are key to successfully communicating climate information in a clearer and more accessible way, making it more understandable for both technical and non-technical audiences.


Sign in / Sign up

Export Citation Format

Share Document