Towards data-driven estimates of the transient climate response to cumulative CO2 emissions using interpretable statistical learning methods

Author(s):  
Katarzyna Tokarska ◽  
Sebastian Sippel ◽  
Reto Knutti

<div> <div> <p>CO<sub>2</sub>-induced warming is approximately proportional to the total amount of CO<sub>2</sub> emitted. This emergent property of the climate system, known as the Transient Climate Response to cumulative CO<sub>2</sub> Emissions (TCRE), gave rise to the concept of a remaining carbon budget that specifies a cap on global CO<sub>2</sub> emissions in line with reaching a given temperature target, such as those in the Paris Agreement (e.g., Matthews et al. 2020). However, estimating the policy-relevant TCRE metric directly from the observation-based data products remains challenging due to non-CO<sub>2</sub> forcing and land-use change emissions present in the real-world climate conditions.</p> <p>Here, we present preliminary results for applying and comparing different statistical learning methods to determine TCRE (and later, remaining carbon budgets) from: (i) climate models’ output and (ii) the observational data products. First, we make use of a ‘perfect-model’ setting, i.e. using output from physics-based climate models (CMIP5 and CMIP6) under historical forcing (treated as pseudo-observations). This output is used to train different statistical-learning models, and to make predictions of TCRE (which are known from climate model simulations under CO<sub>2</sub>-only forcing, per experimental design). Next, we use such trained statistical learning models to make TCRE predictions directly from the observation-based data products.</p> <p>We also explore interpretability of the applied techniques, to determine where the statistical models are learning from, what the regions of importance are, and the key input features and weights. Explainable AI methods (e.g., McGovern et al. 2019; Molnar 2019; Samek et al. 2019) present a promising way forward in linking data-driven statistical and machine learning methods with traditional physical climate sciences, while leveraging from the large amount of data from the observational data products to provide more robust estimates of, often policy relevant, climate metrics.</p> <p>References:</p> <p>Matthews et al. (2020). Opportunities and challenges in using carbon budgets to guide climate policy. Nature Geoscience, 13, 769–779. https://doi.org/10.1038/s41561-020-00663-3</p> <p>McGovern et al. (2019). Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning, B. Am. Meteorol. Soc., 100, 2175–2199, https://doi.org/10.1175/BAMS-D-18-0195.1</p> <p>Molnar, C. (2019) Interpretable Machine Learning -A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/</p> <p>Samek, W. et al. (2019) Explainable AI: Interpreting, explaining and visualizing deep learning. https://doi.org/10.1007/978-3-030-28954-6</p></div></div>

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


2021 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Ninghan Chen ◽  
Zhiqiang Zhong ◽  
Jun Pang

The outbreak of the COVID-19 led to a burst of information in major online social networks (OSNs). Facing this constantly changing situation, OSNs have become an essential platform for people expressing opinions and seeking up-to-the-minute information. Thus, discussions on OSNs may become a reflection of reality. This paper aims to figure out how Twitter users in the Greater Region (GR) and related countries react differently over time through conducting a data-driven exploratory study of COVID-19 information using machine learning and representation learning methods. We find that tweet volume and COVID-19 cases in GR and related countries are correlated, but this correlation only exists in a particular period of the pandemic. Moreover, we plot the changing of topics in each country and region from 22 January 2020 to 5 June 2020, figuring out the main differences between GR and related countries.


2021 ◽  
Vol 14 (11) ◽  
Author(s):  
Tanveer Ahmed Siddiqi ◽  
Saima Ashraf ◽  
Sadiq Ali Khan ◽  
Muhammad Jawed Iqbal

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-36
Author(s):  
Dylan Chou ◽  
Meng Jiang

Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.


Sign in / Sign up

Export Citation Format

Share Document